日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知函數(shù),kR.

          (I)求函數(shù)f(x)的單調(diào)區(qū)間;

          (II)當(dāng)k>0時(shí),若函數(shù)f(x)在區(qū)間(1,2)內(nèi)單調(diào)遞減,求k的取值范圍.

          【答案】Ⅰ)見(jiàn)解析;(Ⅱ

          【解析】分析:Ⅰ)先求出函數(shù)的定義域,求導(dǎo)數(shù)后根據(jù)的取值通過(guò)分類討論求單調(diào)區(qū)間即可.(Ⅱ將問(wèn)題轉(zhuǎn)化為(1,2)上恒成立可得所求

          詳解I)函數(shù)的定義域?yàn)?/span>

          由題意得,

          (1)當(dāng)時(shí),

          ,解得;令,解得

          (2)當(dāng)時(shí),

          ①當(dāng),即時(shí),

          ,解得;令,解得

          ②當(dāng)時(shí),恒成立,函數(shù)上為單調(diào)遞增函數(shù);

          ③當(dāng),即時(shí),

          ,解得;令,解得

          綜上所述,

          當(dāng)時(shí),函數(shù)的單調(diào)遞增區(qū)間為(0,1),單調(diào)遞減區(qū)間為

          當(dāng)時(shí),函數(shù)的單調(diào)遞增區(qū)間為(0,1),,單調(diào)遞減區(qū)間為

          當(dāng)時(shí),函數(shù)的單調(diào)遞增區(qū)間為

          當(dāng)時(shí),函數(shù)的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為

          (II)因?yàn)楹瘮?shù)在(1,2)內(nèi)單調(diào)遞減,

          所以在(1,2)上恒成立.

          又因?yàn)?/span>,則,

          所以在(1,2)上恒成立,

          在(1,2)上恒成立,

          因?yàn)?/span>,

          所以,

          ,

          所以

          k的取值范圍為

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知函數(shù)y=x2的圖象在點(diǎn)(x0 , x02)處的切線為l,若l也與函數(shù)y=lnx,x∈(0,1)的圖象相切,則x0必滿足(
          A.0<x0
          B. <x0<1
          C. <x0
          D. <x0

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】在三棱柱ABC﹣A1B1C1中,側(cè)面AA1C1C⊥底面ABC,AA1=A1C=AC=AB=BC=2,且點(diǎn)O為AC中點(diǎn). (Ⅰ)證明:A1O⊥平面ABC;
          (Ⅱ)求二面角A﹣A1B﹣C1的大。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知,則不等式fx-2+fx2-4)<0的解集為(  )

          A. B. C. D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知函數(shù)的圖象關(guān)于點(diǎn)(-1,0)對(duì)稱,且當(dāng)x(-∞,0)時(shí),成立,(其中f′(x)f(x)的導(dǎo)數(shù));若, ,,則a,b,c的大小關(guān)系是(

          A. a>b>c B. b>a>c C. c>a>b D. c>b>a

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】設(shè)函數(shù)fx=|x-a|+x,其中a0

          1)當(dāng)a=3時(shí),求不等式fx)≥x+4的解集;

          2)若不等式fx)≥x+2a2x[1,3]恒成立,求實(shí)數(shù)a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】若關(guān)于x的方程(x﹣1)4+mx﹣m﹣2=0各個(gè)實(shí)根x1 , x2…xk(k≤4,k∈N*)所對(duì)應(yīng)的點(diǎn)(xi),(i=1,2,3…k)均在直線y=x的同側(cè),則實(shí)數(shù)m的取值范圍是( 。
          A.(﹣1,7)
          B.(﹣∞,﹣7)U(﹣1,+∞)
          C.(﹣7,1)
          D.(﹣∞,1)U(7,+∞)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知向量(sin x,cos x),(cos x,cos x),(2,1)

          (1)若,求sin xcos x的值;

          (2)若0<x≤,求函數(shù)f(x)=·的值域.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,△ABC是邊長(zhǎng)為4的等邊三角形,△ABD是等腰直角三角形,AD⊥BD,平面ABC⊥平面ABD,且EC⊥平面ABC,EC=2.
          (1)證明:DE∥平面ABC;
          (2)證明:AD⊥BE.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案