【題目】我市某礦山企業(yè)生產(chǎn)某產(chǎn)品的年固定成本為萬(wàn)元,每生產(chǎn)千件該產(chǎn)品需另投入
萬(wàn)元,設(shè)該企業(yè)年內(nèi)共生產(chǎn)此種產(chǎn)品
千件,并且全部銷售完,每千件的銷售收入為
萬(wàn)元,且
(Ⅰ)寫出年利潤(rùn)(萬(wàn)元)關(guān)于產(chǎn)品年產(chǎn)量
(千件)的函數(shù)關(guān)系式;
(Ⅱ)問(wèn):年產(chǎn)量為多少千件時(shí),該企業(yè)生產(chǎn)此產(chǎn)品所獲年利潤(rùn)最大?
注:年利潤(rùn)=年銷售收入-年總成本.
【答案】(Ⅰ)
(Ⅱ)年產(chǎn)量為千件時(shí),該企業(yè)生產(chǎn)的此產(chǎn)品所獲年利潤(rùn)最大.
【解析】試題分析:(1)當(dāng)時(shí),
;當(dāng)
時(shí),
,
(2)對(duì)x進(jìn)行分類討論,分當(dāng)和當(dāng)
兩種情況進(jìn)行討論,根據(jù)導(dǎo)數(shù)在求函數(shù)最值中的應(yīng)用,即可求出結(jié)果.
試題解析:解:(1)當(dāng)時(shí),
。2分 當(dāng)
時(shí),
,
(2)①當(dāng)時(shí),由
。
當(dāng)時(shí),
;當(dāng)
時(shí),
,
當(dāng)
時(shí),W取得最大值,即
9分
②當(dāng),
,
當(dāng)且僅當(dāng)
綜合①②知:當(dāng)時(shí),
取得最大值為38.6萬(wàn)元。
故當(dāng)年產(chǎn)量為9千件時(shí),該公司在這一品牌服裝的生產(chǎn)中所獲得年利潤(rùn)最大(13分)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若圓x2+y2﹣4x﹣4y﹣10=0上至少有三個(gè)不同點(diǎn)到直線l:ax+by=0的距離為 .則直線l的傾斜角的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,扇形,圓心角
的大小等于
,半徑為2,在半徑
上有一動(dòng)點(diǎn)
,過(guò)點(diǎn)
作平行于
的直線交弧
于點(diǎn)
.
(1)若是半徑
的中點(diǎn),求線段
的大;
(2)設(shè),求
面積的最大值及此時(shí)
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=ax2+1(a>0),g(x)=x3+bx.
(1)若曲線y=f(x)與曲線y=g(x)在它們的交點(diǎn)(1,c)處有公共切線,求a,b的值;
(2)當(dāng)a=3,b=﹣9時(shí),函數(shù)f(x)+g(x)在區(qū)間[k,2]上的最大值為28,求k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某特色餐館開通了美團(tuán)外賣服務(wù),在一周內(nèi)的某特色菜外賣份數(shù)(份)與收入
(元)之間有如下的對(duì)應(yīng)數(shù)據(jù):
外賣份數(shù) | 2 | 4 | 5 | 6 | 8 |
收入 | 30 | 40 | 60 | 50 | 70 |
(1)畫出散點(diǎn)圖;
(2)求回歸直線方程;
(3)據(jù)此估計(jì)外賣份數(shù)為12份時(shí),收入為多少元.
注:①參考公式:線性回歸方程系數(shù)公式,
;
②參考數(shù)據(jù): ,
,
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】將一個(gè)棱長(zhǎng)為a的正方體嵌入到四個(gè)半徑為1且兩兩相切的實(shí)心小球所形成的球間空隙內(nèi),使得正方體能夠任意自由地轉(zhuǎn)動(dòng),則a的最大值為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知命題P:x1 , x2是方程x2﹣mx﹣1=0的兩個(gè)實(shí)根,且不等式a2+4a﹣3≤|x1﹣x2|對(duì)任意m∈R恒成立;命題q:不等式ax2+2x﹣1>0有解,若命題p∨q為真,p∧q為假,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某種產(chǎn)品的廣告費(fèi)支出x與銷售額y(單位:百萬(wàn)元)之間有如下對(duì)應(yīng):
X | 2 | 4 | 5 | 6 | 8 |
y | 30 | 40 | 60 | 50 | 70 |
(1)求回歸直線方程.
(2)回歸直線必經(jīng)過(guò)的一點(diǎn)是哪一點(diǎn)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為
(
為參數(shù)),以原點(diǎn)為極點(diǎn),
軸的正半軸為極軸,建立極坐標(biāo)系,曲線
的極坐標(biāo)方程為
.
寫出曲線
的極坐標(biāo)的方程以及曲線
的直角坐標(biāo)方程;
若過(guò)點(diǎn)
(極坐標(biāo))且傾斜角為
的直線
與曲線
交于
,
兩點(diǎn),弦
的中點(diǎn)為
,求
的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com