日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知直三棱柱ABC﹣A1B1C1中,∠ABC=120°,AB=2,BC=CC1=1,則異面直線AB1與BC1所成角的余弦值為( )
          A.
          B.
          C.
          D.

          【答案】C
          【解析】解:如圖所示,設(shè)M、N、P分別為AB,BB1和B1C1的中點(diǎn),
          則AB1、BC1夾角為MN和NP夾角或其補(bǔ)角
          (因異面直線所成角為(0, ]),
          可知MN= AB1= ,
          NP= BC1= ;
          作BC中點(diǎn)Q,則△PQM為直角三角形;
          ∵PQ=1,MQ= AC,
          △ABC中,由余弦定理得
          AC2=AB2+BC2﹣2ABBCcos∠ABC
          =4+1﹣2×2×1×(﹣
          =7,
          ∴AC=
          ∴MQ= ;
          在△MQP中,MP= = ;
          在△PMN中,由余弦定理得
          cos∠MNP= = =﹣ ;
          又異面直線所成角的范圍是(0, ],
          ∴AB1與BC1所成角的余弦值為

          【考點(diǎn)精析】掌握異面直線及其所成的角是解答本題的根本,需要知道異面直線所成角的求法:1、平移法:在異面直線中的一條直線中選擇一特殊點(diǎn),作另一條的平行線;2、補(bǔ)形法:把空間圖形補(bǔ)成熟悉的或完整的幾何體,如正方體、平行六面體、長方體等,其目的在于容易發(fā)現(xiàn)兩條異面直線間的關(guān)系.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在道路邊安裝路燈,路面,燈柱高14,燈桿與地面所成角為30°.路燈采用錐形燈罩,燈罩軸線與燈桿垂直,軸線,燈桿都在燈柱和路面寬線確定的平面內(nèi).

          (1)當(dāng)燈桿長度為多少時(shí),燈罩軸線正好通過路面的中線?

          (2)如果燈罩軸線AC正好通過路面的中線,此時(shí)有一高2.5 的警示牌直立在處,求警示牌在該路燈燈光下的影子長度.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】公元263年左右,我國數(shù)學(xué)家劉徽發(fā)現(xiàn)當(dāng)圓內(nèi)接正多邊形的邊數(shù)無限增加時(shí),多邊形面積可無限逼近圓的面積,并創(chuàng)立了“割圓術(shù)”.利用“割圓術(shù)”劉徽得到了圓周率精確到小數(shù)點(diǎn)后兩位的近似值3.14,這就是著名的“徽率”.如圖是利用劉徽的“割圓術(shù)”思想設(shè)計(jì)的一個(gè)程序框圖,則輸出n的值為( ) (參考數(shù)據(jù): ≈1.732,sin15°≈0.2588,sin7.5°≈0.1305)

          A.12
          B.24
          C.36
          D.48

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】△ABC中,角AB,C對(duì)應(yīng)的邊分別是ab,c,已知cos2A﹣3cosB+C=1

          1)求角A的大;

          2)若△ABC的面積S=5b=5,求sinBsinC的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)f(x)=|x+1|. (I)求不等式f(x)<|2x+1|﹣1的解集M;
          (Ⅱ)設(shè)a,b∈M,證明:f(ab)>f(a)﹣f(﹣b).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,平面平面,其中為矩形,為梯形,,.

          (Ⅰ)求證:平面;

          (Ⅱ)若二面角的平面角的余弦值為,求的長.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,四棱錐P﹣ABCD中,側(cè)面PAD為等邊三角形且垂直于底面ABCD,AB=BC= AD,∠BAD=∠ABC=90°,E是PD的中點(diǎn).
          (Ⅰ)證明:直線CE∥平面PAB;
          (Ⅱ)點(diǎn)M在棱PC 上,且直線BM與底面ABCD所成角為45°,求二面角M﹣AB﹣D的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知,函數(shù).

          (1)當(dāng)時(shí),求函數(shù)的單調(diào)遞增區(qū)間;

          (2)求函數(shù)的零點(diǎn)個(gè)數(shù).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】若數(shù)列的前項(xiàng)和為,則下列命題:(1)若數(shù)列是遞增數(shù)列,則數(shù)列也是遞增數(shù)列;(2)數(shù)列是遞增數(shù)列的充要條件是數(shù)列的各項(xiàng)均為正數(shù);(3)若是等差數(shù)列(公差),則的充要條件是;(4)若是等比數(shù)列,則的充要條件是.其中,正確命題的個(gè)數(shù)是( 。

          A. 0個(gè)B. 1個(gè)C. 2個(gè)D. 3個(gè)

          查看答案和解析>>

          同步練習(xí)冊(cè)答案