日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知M(a,b),N(sinωx,cosωx)(ω>0),記f(x)=
          OM
          ON
          (O為坐標原點).若f(x)的最小正周期為2,并且當x=
          1
          3
          時,f(x)的最大值為5.
          (1)求函數(shù)f(x)的表達式;
          (2)對任意的整數(shù)n,在區(qū)間(n,n+1)內(nèi)是否存在曲線y=f(x)的對稱軸?若存在,求出此對稱軸方程;若不存在,說明理由.
          分析:(1)先由內(nèi)積公式求出函數(shù)f(x)的表達式再逆用和差角公式化簡,據(jù)周期為2與函數(shù)過點(
          1
          3
          ,5)求參數(shù).
          (2)解出對稱軸的方程,看其形式是不是可以表示成一個整數(shù)加上一個大于零且小于1的數(shù).若是則存在,若否,則不存在.求解發(fā)現(xiàn),本題結(jié)論是存在.
          解答:解:(1)由題設(shè)條件知f(x)=asinωx+bcosωx=5sin(ωx+φ),
          由已知得
          ω
          =2
          f(
          1
          3
          )=5
          ,得ω=π,φ=
          π
          6
          ,
          所以f(x)=5sin(πx+
          π
          6
          ),.
          (2)曲線f(x) 有對稱軸x=x0的充要條件是5sin(πx0+
          π
          6
          )=±5.即πx0+
          π
          6
          =kπ+
          π
          2
          即x0=k+
          1
          3
          ,k∈Z,
          令n<k+
          1
          3
          <n+1 得k=n (n∈Z),
          所以在區(qū)間(n,n+1)內(nèi)存在曲線f(x)的對稱軸,
          其方程是x=n+
          1
          3
          ,n∈Z,
          點評:本題考查用向量的數(shù)量積公式變形得到函數(shù)的表達式,然后再利用和差角公式變形,根據(jù)題目條件求出參數(shù)得到函數(shù)的表達式,本題綜合性較強.
          練習冊系列答案
          相關(guān)習題

          科目:高中數(shù)學 來源: 題型:

          已知M(a,b)由
          x≥0
          y≥0
          x+y≤4
          確定的平面區(qū)域內(nèi),N(a+b,a-b)所在平面區(qū)域的面積為( 。

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:解答題

          已知M(a,b),N(sinωx,cosωx)(ω>0),記f(x)=數(shù)學公式(O為坐標原點).若f(x)的最小正周期為2,并且當x=數(shù)學公式時,f(x)的最大值為5.
          (1)求函數(shù)f(x)的表達式;
          (2)對任意的整數(shù)n,在區(qū)間(n,n+1)內(nèi)是否存在曲線y=f(x)的對稱軸?若存在,求出此對稱軸方程;若不存在,說明理由.

          查看答案和解析>>

          科目:高中數(shù)學 來源:不詳 題型:解答題

          已知M(a,b),N(sinωx,cosωx)(ω>0),記f(x)=
          OM
          ON
          (O為坐標原點).若f(x)的最小正周期為2,并且當x=
          1
          3
          時,f(x)的最大值為5.
          (1)求函數(shù)f(x)的表達式;
          (2)對任意的整數(shù)n,在區(qū)間(n,n+1)內(nèi)是否存在曲線y=f(x)的對稱軸?若存在,求出此對稱軸方程;若不存在,說明理由.

          查看答案和解析>>

          科目:高中數(shù)學 來源:2010年高三備考數(shù)學好題系列(09)(解析版) 題型:解答題

          已知M(a,b),N(sinωx,cosωx)(ω>0),記f(x)=(O為坐標原點).若f(x)的最小正周期為2,并且當x=時,f(x)的最大值為5.
          (1)求函數(shù)f(x)的表達式;
          (2)對任意的整數(shù)n,在區(qū)間(n,n+1)內(nèi)是否存在曲線y=f(x)的對稱軸?若存在,求出此對稱軸方程;若不存在,說明理由.

          查看答案和解析>>

          同步練習冊答案