如圖所示,直線(xiàn)l:y=x+b與拋物線(xiàn)C:x2=4y相切于點(diǎn)A.
(1)求實(shí)數(shù)b的值;
(2)求以點(diǎn)A為圓心,且與拋物線(xiàn)C的準(zhǔn)線(xiàn)相切的圓的方程.
(1) b=-1 (2) (x-2)2+(y-1)2=4
解析解:(1)由得x2-4x-4b=0.(*)
因?yàn)橹本(xiàn)l與拋物線(xiàn)C相切,
所以Δ=(-4)2-4×(-4b)=0,
解得b=-1.
(2)由(1)可知b=-1,故方程(*)即為x2-4x+4=0,
解得x=2.將其代入x2=4y,得y=1.
故點(diǎn)A(2,1).
因?yàn)閳AA與拋物線(xiàn)C的準(zhǔn)線(xiàn)相切,
所以圓A的半徑r等于圓心A到拋物線(xiàn)的準(zhǔn)線(xiàn)y=-1的距離,
即r=|1-(-1)|=2,
所以圓A的方程為(x-2)2+(y-1)2=4.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,斜率為1的直線(xiàn)過(guò)拋物線(xiàn)y2=2px(p>0)的焦點(diǎn),與拋物線(xiàn)交于兩點(diǎn)A,B,M為拋物線(xiàn)弧AB上的動(dòng)點(diǎn).
(1)若|AB|=8,求拋物線(xiàn)的方程;
(2)求的最大值
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓+
=1(a>b>0),點(diǎn)P(
a,
a)在橢圓上.
(1)求橢圓的離心率;
(2)設(shè)A為橢圓的左頂點(diǎn),O為坐標(biāo)原點(diǎn),若點(diǎn)Q在橢圓上且滿(mǎn)足|AQ|=|AO|,求直線(xiàn)OQ的斜率的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,橢圓過(guò)點(diǎn)P(1,
),其左、右焦點(diǎn)分別為F1,F2,離心率e=
, M, N是直線(xiàn)x=4上的兩個(gè)動(dòng)點(diǎn),且
·
=0.
(1)求橢圓的方程;
(2)求MN的最小值;
(3)以MN為直徑的圓C是否過(guò)定點(diǎn)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓C的對(duì)稱(chēng)中心為原點(diǎn)O,焦點(diǎn)在x軸上,左右焦點(diǎn)分別為和
,且|
|=2,
點(diǎn)(1,)在該橢圓上.
(1)求橢圓C的方程;
(2)過(guò)的直線(xiàn)
與橢圓C相交于A(yíng),B兩點(diǎn),若
A
B的面積為
,求以
為圓心且與直線(xiàn)
相切圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
給定橢圓C:+
=1(a>b>0),稱(chēng)圓心在原點(diǎn)O,半徑為
的圓是橢圓C的“準(zhǔn)圓”.若橢圓C的一個(gè)焦點(diǎn)為F(
,0),其短軸上的一個(gè)端點(diǎn)到F的距離為
.
(1)求橢圓C的方程和其“準(zhǔn)圓”的方程.
(2)點(diǎn)P是橢圓C的“準(zhǔn)圓”上的一個(gè)動(dòng)點(diǎn),過(guò)動(dòng)點(diǎn)P作直線(xiàn)l1,l2使得l1,l2與橢圓C都只有一個(gè)交點(diǎn),且l1,l2分別交其“準(zhǔn)圓”于點(diǎn)M,N.
①當(dāng)P為“準(zhǔn)圓”與y軸正半軸的交點(diǎn)時(shí),求l1,l2的方程;
②求證:|MN|為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)點(diǎn)P是圓x2+y2=4上任意一點(diǎn),由點(diǎn)P向x軸作垂線(xiàn)PP0,垂足為P0,且=
.
(1)求點(diǎn)M的軌跡C的方程;
(2)設(shè)直線(xiàn)l:y=kx+m(m≠0)與(1)中的軌跡C交于不同的兩點(diǎn)A,B.
若直線(xiàn)OA,AB,OB的斜率成等比數(shù)列,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓:
的離心率為
,右焦點(diǎn)
到直線(xiàn)
的距離為
.
(1)求橢圓的方程;
(2)過(guò)橢圓右焦點(diǎn)F2斜率為(
)的直線(xiàn)
與橢圓
相交于
兩點(diǎn),
為橢圓的右頂點(diǎn),直線(xiàn)
分別交直線(xiàn)
于點(diǎn)
,線(xiàn)段
的中點(diǎn)為
,記直線(xiàn)
的斜率為
,求證:
為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓的一個(gè)焦點(diǎn)
與拋物線(xiàn)
的焦點(diǎn)重合,且截拋物線(xiàn)的準(zhǔn)線(xiàn)所得弦長(zhǎng)為
,傾斜角為
的直線(xiàn)
過(guò)點(diǎn)
.
(1)求該橢圓的方程;
(2)設(shè)橢圓的另一個(gè)焦點(diǎn)為,問(wèn)拋物線(xiàn)
上是否存在一點(diǎn)
,使得
與
關(guān)于直線(xiàn)
對(duì)稱(chēng),若存在,求出點(diǎn)
的坐標(biāo),若不存在,說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com