日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 對于函數(shù)f(x)與g(x)和區(qū)間D,如果存在x0∈D,使|f(x0)-g(x0)|≤1,則稱x0是函數(shù)f(x)與g(x)在區(qū)間D上的“友好點”.現(xiàn)給出兩個函數(shù):
          ①f(x)=x2,g(x)=2x-2;
          ②f(x)=
          x
          ,g(x)=x+2;
          ③f(x)=e-x,g(x)=-
          1
          x
          ;
          ④f(x)=lnx,g(x)=x,
          則在區(qū)間(0,+∞)上的存在唯一“友好點”的是(  )
          A、①②B、③④C、②③D、①④
          分析:根據(jù)“友好點”的定義,分別進行判斷即可.
          解答:解:①f(x)-g(x)=x2-2x+2=(x-1)2+1≥1,∴要使|f(x0)-g(x0)|≤1,則只有當(dāng)x0=1時,滿足條件,
          ∴在區(qū)間(0,+∞)上的存在唯一“友好點”,∴①正確.
          ②g(x)-f(x)=x-
          x
          +2
          =(
          x
          -
          1
          2
          )2+
          7
          4
          7
          4
          >1
          ,∴不存在x0∈D,使|f(x0)-g(x0)|≤1,∴函數(shù)不存在“友好點”,∴②錯誤.
          ③設(shè)h(x)=f(x)-g(x)=e-x+
          1
          x
          ,則函數(shù)h(x)在(0,+∞)上單調(diào)減,∴x→0,h(x)→+∞,x→+∞,h(x)→0,使|f(x0)-g(x0)|≤1的x0不唯一,
          ∴③不滿足條件,∴③錯誤.
          ④h(x)=g(x)-f(x)=x-lnx,(x>0),h′(x)=1-
          1
          x
          ,
          令h′(x)>0,可得x>1,令h′(x)<0,可得0<x<1,
          ∴x=1時,函數(shù)取得極小值,且為最小值,最小值為h(1)=1-0=1,
          ∴g(x)-f(x)≥1,
          ∴當(dāng)x0=1時,使|f(x0)-g(x0)|≤1的x0唯一,∴④滿足條件.
          故選:D.
          點評:本題主要考查對新定義的理解與運用,考查函數(shù)最值的判斷,綜合性較強,難度較大,考查學(xué)生分析問題的能力.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          設(shè)函數(shù)f(x)=a2x2(a>0),g(x)=blnx.
          (1)若函數(shù)y=f(x)圖象上的點到直線x-y-3=0距離的最小值為
          2
          ,求a的值;
          (2)關(guān)于x的不等式(x-1)2>f(x)的解集中的整數(shù)恰有3個,求實數(shù)a的取值范圍;
          (3)對于函數(shù)f(x)與g(x)定義域上的任意實數(shù)x,若存在常數(shù)k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數(shù)f(x)與g(x)的“分界線”.設(shè)a=
          2
          2
          ,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012•杭州一模)對于函數(shù) f(x)與 g(x)和區(qū)間E,如果存在x0∈E,使|f(x0)-g(x0)|<1,則我們稱函數(shù) f(x)與 g(x)在區(qū)間E上“互相接近”.那么下列所給的兩個函數(shù)在區(qū)間(0,+∞)上“互相接近”的是(  )

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          給定區(qū)間D,對于函數(shù)f(x)與g(x)及任意x1,x2∈D(其中x1
          x
           
          2
          ),若不等式f(x1)-f(x2)>g(x1)-g(x2)恒成立,則稱函數(shù)f(x)相對于函數(shù)g(x)在區(qū)間D上是“漸先函數(shù)”.已知函數(shù)f(x)=ax2+ax相對于函數(shù)g(x)=2x-3在區(qū)間[a,a+2]上是漸先函數(shù),則實數(shù)a的取值范圍是
          a≤
          -5-
          41
          4
          a≥
          -1+
          17
          2
          a≤
          -5-
          41
          4
          a≥
          -1+
          17
          2

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          設(shè)函數(shù)f(x)=a2x2(a>0),g(x)=blnx.
          (1)將函數(shù)y=f(x)圖象向右平移一個單位即可得到函數(shù)y=φ(x)的圖象,試寫出y=φ(x)的解析式及值域;
          (2)關(guān)于x的不等式(x-1)2>f(x)的解集中的整數(shù)恰有3個,求實數(shù)a的取值范圍;
          (3)對于函數(shù)f(x)與g(x)定義域上的任意實數(shù)x,若存在常數(shù)k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數(shù)f(x)與g(x)的“分界線”.設(shè)a=
          2
          2
          ,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請說明理由.

          查看答案和解析>>

          同步練習(xí)冊答案