日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知△ABC中,A(1,3),AB、AC邊上的中線所在直線方程分別為x-2y+1=0和y-1=0,求△ABC各邊所在直線方程.
          分析:B點(diǎn)應(yīng)滿足的兩個(gè)條件是:①B在直線y-1=0上;②BA的中點(diǎn)D在直線x-2y+1=0上.由①可設(shè)B(xB,1),進(jìn)而由②確定xB值,得到B點(diǎn)坐標(biāo);同理設(shè)出點(diǎn)C的縱坐標(biāo),根據(jù)中點(diǎn)坐標(biāo)公式和C在x-2y+1=0上可求出C點(diǎn)坐標(biāo),然后利用兩點(diǎn)式分別求出三邊所在的直線方程即可.
          解答:解:設(shè)B(xB,1)則AB的中點(diǎn)D(
          xB+1
          2
          ,2)

          ∵D在中線CD:x-2y+1=0上
          xB+1
          2
          -2•2+1=0

          解得xB=5,故B(5,1).
          同樣,因點(diǎn)C在直線x-2y+1=0上,可以設(shè)C為(2yC-1,yC),
          根據(jù)
          yc+3
          2
          =1,解出yC=-1,
          所以C(-3,-1).
          根據(jù)兩點(diǎn)式,得直線AB的方程為y-3=
          3-1
          1-5
          (x-1);
          直線BC的方程為y-1=
          -1-1
          -3-5
          (x-5);
          直線AC的方程為y-3=
          -1-3
          -3-1
          (x-1)
          化簡(jiǎn)得△ABC中直線AB:x+2y-7=0,
          直線BC:x-4y-1=0,
          直線AC:x-y+2=0.
          點(diǎn)評(píng):此題是一道綜合題,要求學(xué)生靈活運(yùn)用中點(diǎn)坐標(biāo)公式,掌握點(diǎn)在直線上則點(diǎn)的坐標(biāo)滿足直線方程化簡(jiǎn)求值,會(huì)根據(jù)條件寫出直線的一般式方程.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知△ABC中,A=60°,a=
          15
          ,c=4,那么sinC=
          2
          5
          5
          2
          5
          5

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知△ABC中,A(4,2),B(1,8),C(-1,8).
          (1)求AB邊上的高所在的直線方程;
          (2)直線l∥AB,與AC,BC依次交于E,F(xiàn),S△CEF:S△ABC=1:4.求l所在的直線方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知△ABC中,a=2,b=1,C=60°,則邊長(zhǎng)c=
          3
          3

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知△ABC中,a=2
          3
          ,若
          m
          =(-cos
          A
          2
          ,sin
          A
          2
          )
          ,
          n
          =(cos
          A
          2
          ,sin
          A
          2
          )
          滿足
          m
          n
          =
          1
          2
          .(1)若△ABC的面積S=
          3
          ,求b+c的值.(2)求b+c的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知△ABC中,A,B,C的對(duì)邊分別為a,b,c,且
          (AB)2
          =
          AB
          AC
          +
          BA
          BC
          +
          CA
          CB

          (Ⅰ)判斷△ABC的形狀,并求t=sinA+sinB的取值范圍;
          (Ⅱ)若不等式a2(b+c)+b2(c+a)+c2(a+b)≥kabc,對(duì)任意的滿足題意的a,b,c都成立,求k的取值范圍.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案