日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知等差數(shù)列{an}的各項均為正數(shù),a1=3,前n項和為Sn,{bn}是等比數(shù)列,b1=1,且b2S2=64,b3S3=960.
          (1)求數(shù)列{an}與{bn}的通項公式;
          (2)求證:數(shù)學(xué)公式都成立.

          解:(1)設(shè){an}的公差為d(d>0),{bn}的公比為q,

          解得(舍)
          所以an=3+2(n-1)=2n+1,n∈N*,
          bn=8n-1,n∈N*
          (2)因為Sn=3+5+…+(2n+1)=n(n+2)
          所以=
          =
          =
          都成立.
          分析:(1)因為數(shù)列{an}為等差數(shù)列,所以只要求出首項與公差,就可以求出通項公式,同樣,因為數(shù)列{an}為等比數(shù)列,所以只要求出首項與公比,就可以求出通項公式,然后根據(jù)a1=3,前n項和為Sn,{bn}是等比數(shù)列,b1=1,且b2S2=64,b3S3=960.尋找含a1,d,b1,q的關(guān)系式,求出a1,d,b1,q即可.
          (2)由(1)中所求數(shù)列{an}的首項與公差,代入等差數(shù)列的前n項和公式,求出Sn,再計算,最后用放縮法即可證明.
          點評:本題考查了等差等比數(shù)列通項公式的求法,以及放縮法比較大。
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知等差數(shù)列{an},公差d不為零,a1=1,且a2,a5,a14成等比數(shù)列;
          (1)求數(shù)列{an}的通項公式;
          (2)設(shè)數(shù)列{bn}滿足bn=an3n-1,求數(shù)列{bn}的前n項和Sn

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知等差數(shù)列{an}中:a3+a5+a7=9,則a5=
           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知等差數(shù)列{an}滿足:a5=11,a2+a6=18.
          (1)求{an}的通項公式;
          (2)若bn=an+q an(q>0),求數(shù)列{bn}的前n項和Sn

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知等差數(shù)列{an}滿足a2=0,a6+a8=-10
          (1)求數(shù)列{an}的通項公式;     
          (2)求數(shù)列{|an|}的前n項和;
          (3)求數(shù)列{
          an2n-1
          }的前n項和.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)已知等差數(shù)列{an}中,a4a6=-4,a2+a8=0,n∈N*
          (Ⅰ)求數(shù)列{an}的通項公式;
          (Ⅱ)若{an}為遞增數(shù)列,請根據(jù)如圖的程序框圖,求輸出框中S的值(要求寫出解答過程).

          查看答案和解析>>

          同步練習(xí)冊答案