【題目】已知橢圓C:+y2=1,不與坐標(biāo)軸垂直的直線l與橢圓C相交于M,N兩點(diǎn).
(1)若線段MN的中點(diǎn)坐標(biāo)為 (1,),求直線l的方程;
(2)若直線l過(guò)點(diǎn)P(p,0),點(diǎn)Q(q,0)滿(mǎn)足kQM+kQN=0,求pq的值.
【答案】(1)x+2y﹣2=0;(2)pq=4.
【解析】
(1)設(shè)M(x1,y1),N(x2,y2),代入橢圓方程,然后相減用點(diǎn)差法將中點(diǎn)公式代入,可求出直線M N的斜率,然后寫(xiě)出直線方程.
(2)設(shè)出直線M N的方程與橢圓方程聯(lián)立,利用韋達(dá)定理代入用M, N的坐標(biāo)表示出kQM+kQN=0的式子中,可求出答案.
(1)設(shè)M(x1,y1),N(x2,y2),則,兩式相減,可得.
,①
由題意可知x1+x2=2,y1+y2=1,代入①可得直線MN的斜率k==﹣
.
所以直線MN的方程y﹣=﹣
(x﹣1),即x+2y﹣2=0,
所以直線MN的方程x+2y﹣2=0.
(2)由題意可知設(shè)直線MN的方程y=k(x﹣p),
設(shè)M(x1,y1),N(x2,y2),
聯(lián)立,整理得(1+4k2)x2﹣8k2px+4k2p2﹣4=0,
則x1+x2=,x1x2=
,
由kQM+kQN=0,則=0,
即y1(x2﹣q)+y2(x1﹣q)=0,
∴k(x1﹣p)(x2﹣q)+k(x2﹣p)(x1﹣q)=0,
化簡(jiǎn)得2x1x2﹣(p+q)(x1+x2)+2pq=0,
∴﹣
+2pq=0,
化簡(jiǎn)得:2pq﹣8=0,
∴pq=4.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】祖暅?zhǔn)俏覈?guó)南北朝時(shí)代的偉大科學(xué)家,他在實(shí)踐的基礎(chǔ)上提出了體積計(jì)算的原理:“冪勢(shì)既同,則積不容異”,稱(chēng)為祖暅原理.意思是底面處于同一平面上的兩個(gè)同高的幾何體,若在等高處的截面面積始終相等,則它們的體積相等.利用這個(gè)原理求半球O的體積時(shí),需要構(gòu)造一個(gè)幾何體,該幾何體的三視圖如圖所示,則該幾何體的體積為_____,表面積為_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】點(diǎn)是曲線
:
上的一個(gè)動(dòng)點(diǎn),曲線
在點(diǎn)
處的切線與
軸、
軸分別交于
,
兩點(diǎn),點(diǎn)
是坐標(biāo)原點(diǎn),①
;②
的面積為定值;③曲線
上存在兩點(diǎn)
,
使得
是等邊三角形;④曲線
上存在兩點(diǎn)
,
使得
是等腰直角三角形,其中真命題的個(gè)數(shù)是( )
A.1B.2C.3D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】中國(guó)古代數(shù)學(xué)成就甚大,在世界科技史上占有重要的地位.“算經(jīng)十書(shū)”是漢、唐千余年間陸續(xù)出現(xiàn)的10部數(shù)學(xué)著作,包括《周髀算經(jīng)》、《九章算術(shù)》、……、《綴術(shù)》等,它們?cè)?jīng)是隋唐時(shí)期國(guó)子監(jiān)算學(xué)科的教科書(shū).某中學(xué)圖書(shū)館全部收藏了這10部著作,其中4部是古漢語(yǔ)本,6部是現(xiàn)代譯本,若某學(xué)生要從中選擇2部作為課外讀物,至少有一部是現(xiàn)代譯本的概率是( )
A.B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一項(xiàng)是,接下來(lái)的兩項(xiàng)是
,
,再接下來(lái)的三項(xiàng)是
,
,
,依此類(lèi)推,若該數(shù)列前
項(xiàng)和
滿(mǎn)足:①
②
是2的整數(shù)次冪,則滿(mǎn)足條件的最小的
為
A. 21B. 91C. 95D. 10
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:極坐標(biāo)與參數(shù)方程
在極坐標(biāo)系下,已知圓O:和直線
(1)求圓O和直線l的直角坐標(biāo)方程;
(2)當(dāng)時(shí),求直線l與圓O公共點(diǎn)的一個(gè)極坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù).
(1)證明:,都有
;
(2)若函數(shù)有且只有一個(gè)零點(diǎn),求
的極值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知在Rt△ABC中,,
,
,它的內(nèi)接正方形DEFG的一邊EF在斜邊BA上,D、G分別在邊BC、CA上,設(shè)△ABC的面積為
,正方形DEFG的面積為
.
(1)試用、
分別表示
和
;
(2)設(shè),求
的最大值,并求出此時(shí)的
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2019年2月13日《西安市全民閱讀促進(jìn)條例》全文發(fā)布,旨在保障全民閱讀權(quán)利,培養(yǎng)全民閱讀習(xí)慣,提高全民閱讀能力,推動(dòng)文明城市和文化強(qiáng)市建設(shè).某高校為了解條例發(fā)布以來(lái)全校學(xué)生的閱讀情況,隨機(jī)調(diào)查了200名學(xué)生每周閱讀時(shí)間(單位:小時(shí))并繪制如圖所示的頻率分布直方圖.
(1)求這200名學(xué)生每周閱讀時(shí)間的樣本平均數(shù);
(2)為查找影響學(xué)生閱讀時(shí)間的因素,學(xué)校團(tuán)委決定從每周閱讀時(shí)間為,
的學(xué)生中抽取9名參加座談會(huì).
(i)你認(rèn)為9個(gè)名額應(yīng)該怎么分配?并說(shuō)明理由;
(ii)座談中發(fā)現(xiàn)9名學(xué)生中理工類(lèi)專(zhuān)業(yè)的較多.請(qǐng)根據(jù)200名學(xué)生的調(diào)研數(shù)據(jù),填寫(xiě)下面的列聯(lián)表,并判斷是否有
的把握認(rèn)為學(xué)生閱讀時(shí)間不足(每周閱讀時(shí)間不足8.5小時(shí))與“是否理工類(lèi)專(zhuān)業(yè)”有關(guān)?(精確到0.1)
閱讀時(shí)間不足8.5小時(shí) | 閱讀時(shí)間超過(guò)8.5小時(shí) | |
理工類(lèi)專(zhuān)業(yè) | 40 | 60 |
非理工類(lèi)專(zhuān)業(yè) |
附:(
).
臨界值表:
0.150 | 0.100 | 0.050 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com