日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (1)已知函數(shù)y=ln(-x2+x-a)的定義域?yàn)椋?2,3),求實(shí)數(shù)a的取值范圍;
          (2)已知函數(shù)y=ln(-x2+x-a)在(-2,3)上有意義,求實(shí)數(shù)a的取值范圍.
          分析:(1)由題意可得-x2+x-a>0的解集為(-2,3),即-2,3是方程-x2+x-a=0的兩個(gè)根,利用一元二次方程根與系數(shù)的關(guān)系求出a的值.
          (2)由題意可得(-2,3)是不等式-x2+x-a>0的解集{x|-x2+x-a>0}的子集,故有 
          △=1-4a>0
          f(-2)≥0
          f(3)≥0
          ,解不等式組求出實(shí)數(shù)a的取值范圍.
          解答:解:(1)由題意可得-x2+x-a>0的解集為(-2,3),即-2,3是方程-x2+x-a=0的兩個(gè)根,
          故有-2×3=a,即 a=-6.
          (2)由題意可得(-2,3)是不等式-x2+x-a>0的解集{x|-x2+x-a>0}的子集,
          故有 
          △=1-4a>0
          f(-2)≥0
          f(3)≥0
          ,即
          a<
          1
          4
          a≤-6
          a≤-6
          ,解得a≤-6,
          故實(shí)數(shù)a的取值范圍為(-∞,-6].
          點(diǎn)評:本題主要考查對數(shù)函數(shù)的圖象和性質(zhì)的應(yīng)用,一元二次方程根與系數(shù)的關(guān)系,體現(xiàn)了轉(zhuǎn)化的數(shù)學(xué)思想,屬于中檔題.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012•朝陽區(qū)二模)設(shè)函數(shù)f(x)=alnx+
          2
          a
          2
           
          x
          (a≠0)

          (1)已知曲線y=f(x)在點(diǎn)(1,f(1))處的切線l的斜率為2-3a,求實(shí)數(shù)a的值;
          (2)討論函數(shù)f(x)的單調(diào)性;
          (3)在(1)的條件下,求證:對于定義域內(nèi)的任意一個(gè)x,都有f(x)≥3-x.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (1)已知函數(shù)f(x)=|x-2|+|x-4|的最小值為m,實(shí)數(shù)a,b,c,n,p,q
          滿足a2+b2+c2=n2+p2+q2=m.
          (Ⅰ)求m的值;     (Ⅱ)求證:
          n4
          a2
          +
          p4
          b2
          +
          q4
          c2
          ≥2

          (2)已知在直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為
          x=2tcosθ
          y=2sinθ
          (t為非零常數(shù),θ為參數(shù)),在極坐標(biāo)系(與直角坐標(biāo)系xOy取相同的長度單位,且以原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸)中,直線l的方程為ρsin(θ-
          π
          4
          )=2
          2

          (Ⅰ)求曲線C的普通方程并說明曲線的形狀;
          (Ⅱ)是否存在實(shí)數(shù)t,使得直線l與曲線C有兩個(gè)不同的公共點(diǎn)A、B,且
          OA
          OB
          =10
          (其中O為坐標(biāo)原點(diǎn))?若存在,請求出;否則,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=2x(ex-1)-x2(x∈R).
          (1)求證:函數(shù)f(x)有且只有兩個(gè)零點(diǎn);
          (2)已知函數(shù)y=g(x)的圖象與函數(shù)h(x)=-
          1
          2
          f(-x)-
          1
          2
          x2+x的圖象關(guān)于直線x=l對稱.證明:當(dāng)x>l時(shí),h(x)>g(x);
          (3)如果一條平行x軸的直線與函數(shù)y=h(x)的圖象相交于不同的兩點(diǎn)A和B,試判斷線段AB的中點(diǎn)C是否屬于集合M={(x,y)||x|+|y|≤1},并說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)y=x3-8x+2,
          (1)求函數(shù)在區(qū)間[2,3]上的值域;
          (2)過原點(diǎn)作曲線的切線l:y=kx,求切線方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)y=3x2-ax+2a的圖象與x軸相交于不同的兩點(diǎn)A、B.
          (1)若A、B兩點(diǎn)分別在直線x=1的兩側(cè),求實(shí)數(shù)a的取值范圍;
          (2)若A、B兩點(diǎn)都在直線l:x=1的右側(cè),求實(shí)數(shù)a的取值范圍.

          查看答案和解析>>

          同步練習(xí)冊答案