【題目】已知,
是橢圓
:
的左、右焦點(diǎn),
恰好與拋物線(xiàn)
的焦點(diǎn)重合,過(guò)橢圓
的左焦點(diǎn)
且與
軸垂直的直線(xiàn)被橢圓
截得的線(xiàn)段長(zhǎng)為3.
(1)求橢圓的方程;
(2)已知點(diǎn),直線(xiàn)
:
,過(guò)
斜率為
的直線(xiàn)與橢圓
交于
,
兩點(diǎn),與直線(xiàn)
交于
點(diǎn),若直線(xiàn)
,
,
的斜率分別是
,
,
,求證:無(wú)論
取何值,總滿(mǎn)足
是
和
的等差中項(xiàng).
【答案】(1);(2)見(jiàn)解析
【解析】分析:(1):由題意把代入橢圓
,求得
,即可得到橢圓的方程;
(2)把直線(xiàn)方程為:
,代入橢圓
方程,利用根與系數(shù)的關(guān)系,求得
,把
代入直線(xiàn)
方程,得
,又因?yàn)?/span>
三點(diǎn)共線(xiàn),所以
,化簡(jiǎn)整理得
,即可作出證明.
詳解:(1):由題意,把
代入橢圓
,得
,因此橢圓
方程為
.
(2)直線(xiàn)方程為:
,代入橢圓
方程,
并整理得,
設(shè)則有
,
把代入直線(xiàn)
方程得:
, 從而
.
又因?yàn)?/span>三點(diǎn)共線(xiàn),所以
所以
,又
,所以
,即無(wú)論
取何值,
總滿(mǎn)足是
和
的等差中項(xiàng).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】海水養(yǎng)殖場(chǎng)進(jìn)行某水產(chǎn)品的新、舊網(wǎng)箱養(yǎng)殖方法的產(chǎn)量對(duì)比,收獲時(shí)各隨機(jī)抽取了100個(gè)網(wǎng)箱,測(cè)量各箱水產(chǎn)品的產(chǎn)量(單位:kg), 其頻率分布直方圖如下:
(1)記A表示事件“舊養(yǎng)殖法的箱產(chǎn)量低于50 kg”,估計(jì)A的概率;
(2)填寫(xiě)下面列聯(lián)表,并根據(jù)列聯(lián)表判斷是否有99%的把握認(rèn)為箱產(chǎn)量與養(yǎng)殖方法有關(guān):
箱產(chǎn)量<50 kg | 箱產(chǎn)量≥50 kg | |
舊養(yǎng)殖法 | ||
新養(yǎng)殖法 |
(3)根據(jù)箱產(chǎn)量的頻率分布直方圖,對(duì)這兩種養(yǎng)殖方法的優(yōu)劣進(jìn)行比較.
附:
P( | 0.050 0.010 0.001 |
k | 3.841 6.635 10.828 |
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線(xiàn)與直線(xiàn)
交于
不同兩點(diǎn)分別過(guò)點(diǎn)
、點(diǎn)
作拋物線(xiàn)
的切線(xiàn),所得的兩條切線(xiàn)相交于點(diǎn)
.
(Ⅰ)求證為定值:
(Ⅱ)求的面積的最小值及此時(shí)的直線(xiàn)
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】記為數(shù)列
的前
項(xiàng)和.“任意正整數(shù)
,均有
”是“
為遞增數(shù)列”的
A. 充分不必要條件 B. 必要不充分條件
C. 充要條件 D. 既不充分也不必要條件
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),曲線(xiàn)
在
處的切線(xiàn)方程為
.
(1)求的值;
(2)求證:時(shí),
;
(3)求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】我國(guó)明代珠算家程大位的名著《直指算法統(tǒng)宗》中有如下問(wèn)題:“今有白米一百八十石,令三人從上及和減率分之,只云甲多丙米三十六石,問(wèn):各該若干?”其意思為:“今有白米一百八十石,甲、乙、丙三人來(lái)分,他們分得的白米數(shù)構(gòu)成等差數(shù)列,只知道甲比丙多分三十六石,那么三人各分得多少白米?”請(qǐng)問(wèn):乙應(yīng)該分得( )白米
A. 96石B. 78石C. 60石D. 42石
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】“微信運(yùn)動(dòng)”是手機(jī)推出的多款健康運(yùn)動(dòng)軟件中的一款,某學(xué)校140名老師均在微信好友群中參與了“微信運(yùn)動(dòng)”,對(duì)運(yùn)動(dòng)10000步或以上的老師授予“運(yùn)動(dòng)達(dá)人”稱(chēng)號(hào),低于10000步稱(chēng)為“參與者”,為了解老師們運(yùn)動(dòng)情況,選取了老師們?cè)?月28日的運(yùn)動(dòng)數(shù)據(jù)進(jìn)行分析,統(tǒng)計(jì)結(jié)果如下:
運(yùn)動(dòng)達(dá)人 | 參與者 | 合計(jì) | |
男教師 | 60 | 20 | 80 |
女教師 | 40 | 20 | 60 |
合計(jì) | 100 | 40 | 140 |
(1)根據(jù)上表說(shuō)明,能否在犯錯(cuò)誤概率不超過(guò)0.05的前提下認(rèn)為獲得“運(yùn)動(dòng)達(dá)人”稱(chēng)號(hào)與性別有關(guān)?
(2)從具有“運(yùn)動(dòng)達(dá)人”稱(chēng)號(hào)的教師中,采用按性別分層抽樣的方法選取10人參加全國(guó)第四屆“萬(wàn)步有約”全國(guó)健走激勵(lì)大賽某賽區(qū)的活動(dòng),若從選取的10人中隨機(jī)抽取3人作為代表參加開(kāi)幕式,設(shè)抽取的3人中女教師人數(shù)為,寫(xiě)出
的分布列并求出數(shù)學(xué)期望
.
參考公式:,其中
.
參考數(shù)據(jù):
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】德國(guó)數(shù)學(xué)家科拉茨年提出了一個(gè)著名的猜想:任給一個(gè)正整數(shù)
,如果
是偶數(shù),就將它減半(即
);如果
是奇數(shù),則將它乘
加
(即
),不斷重復(fù)這樣的運(yùn)算,經(jīng)過(guò)有限步后,一定可以得到
.對(duì)于科拉茨猜想,目前誰(shuí)也不能證明,也不能否定.現(xiàn)在請(qǐng)你研究:如果對(duì)正整數(shù)
(首項(xiàng))按照上述規(guī)則施行變換后的第
項(xiàng)為
(注:
可以多次出現(xiàn)),則
的所有不同值的個(gè)數(shù)為( )
A. B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】《九章算術(shù)》是我國(guó)古代的數(shù)學(xué)名著,書(shū)中把三角形的田稱(chēng)為“圭田”,把直角梯形的田稱(chēng)為“邪田”,稱(chēng)底是“廣”,稱(chēng)高是“正從”,“步”是丈量土地的單位.現(xiàn)有一邪田,廣分別為十步和二十步,正從為十步,其內(nèi)有一塊廣為八步,正從為五步的圭田.若在邪田內(nèi)隨機(jī)種植一株茶樹(shù),求該株茶樹(shù)恰好種在圭田內(nèi)的概率為( )
A. B.
C.
D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com