日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知函數(shù).

          (1)求曲線在點(diǎn)處的切線方程;

          (2)當(dāng)時(shí), 恒成立,求的最大值;

          (3)設(shè),若的值域?yàn)?/span>,求的取值范圍.(提示: ,

          【答案】(1) ;(2) ;(3) .

          【解析】試題分析:

          (1)首先求解導(dǎo)函數(shù),利用導(dǎo)函數(shù)求得斜率即可求得切線方程;

          (2)結(jié)合題意構(gòu)造新函數(shù),討論函數(shù)g(x)的最小值可得的最大值為.

          (3)構(gòu)造函數(shù),結(jié)合導(dǎo)函數(shù)的性質(zhì)得到關(guān)于實(shí)數(shù)t的不等式組,求解不等式組可得的取值范圍是.

          試題解析:

          (1)∵,

          ,又,

          ∴所求切線方程為,即.

          (2)當(dāng)時(shí), ,即恒成立,

          設(shè),

          ,

          當(dāng)時(shí), , 遞減;當(dāng)時(shí), , 遞增.

          ,

          , 的最大值為.

          (3) , ,

          .

          ∴當(dāng)時(shí), 取得極小值,當(dāng)時(shí), 取得極大值.

          , ,∴.

          .∴,

          .

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)事件A表示“關(guān)于x的一元二次方程x2+ax+b2=0有實(shí)根”,其中a,b為實(shí)常數(shù). (Ⅰ)若a為區(qū)間[0,5]上的整數(shù)值隨機(jī)數(shù),b為區(qū)間[0,2]上的整數(shù)值隨機(jī)數(shù),求事件A發(fā)生的概率;
          (Ⅱ)若a為區(qū)間[0,5]上的均勻隨機(jī)數(shù),b為區(qū)間[0,2]上的均勻隨機(jī)數(shù),求事件A發(fā)生的概率.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】定義在R上的函數(shù)f(x)滿足f(x)+f(x+5)=16,當(dāng)x∈(﹣1,4]時(shí),f(x)=x2﹣2x , 則函數(shù)f(x)在區(qū)間[0,2016]上的零點(diǎn)個(gè)數(shù)是

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)f(x)的定義域?yàn)镽,且f(x)不為常值函數(shù),有以下命題: ①函數(shù)g(x)=f(x)+f(﹣x)一定是偶函數(shù);
          ②若對任意x∈R都有f(x)+f(2﹣x)=0,則f(x)是以2為周期的周期函數(shù);
          ③若f(x)是奇函數(shù),且對于任意x∈R,都有f(x)+f(2+x)=0,則f(x)的圖象的對稱軸方程為x=2n+1(n∈Z);
          ④對于任意的x1 , x2∈R,且x1≠x2 , 若 >0恒成立,則f(x)為R上的增函數(shù),
          其中所有正確命題的序號是

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】先后擲子(子的六個(gè)面上分別標(biāo)有1,2,3,4,5,6個(gè)點(diǎn))兩次,落在水平桌面后,記正面朝上的點(diǎn)數(shù)分別為x,y,設(shè)事件A為“x+y為偶數(shù)”,事件B為“x,y中有偶數(shù)且x≠y”,則概率P(B|A)=(
          A.
          B.
          C.
          D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某中學(xué)為研究學(xué)生的身體素質(zhì)與課外體育鍛煉時(shí)間的關(guān)系,對該校200名高三學(xué)生的課外體育鍛煉平均每天運(yùn)動(dòng)的時(shí)間進(jìn)行調(diào)查,如表:(平均每天鍛煉的時(shí)間單位:分鐘)

          平均每天鍛煉
          的時(shí)間(分鐘)

          [0,10)

          [10,20)

          [20,30)

          [30,40)

          [40,50)

          [50,60)

          總?cè)藬?shù)

          20

          36

          44

          50

          40

          10

          將學(xué)生日均課外課外體育運(yùn)動(dòng)時(shí)間在[40,60)上的學(xué)生評價(jià)為“課外體育達(dá)標(biāo)”.
          (Ⅰ)請根據(jù)上述表格中的統(tǒng)計(jì)數(shù)據(jù)填寫下面2×2列聯(lián)表,并通過計(jì)算判斷是否能在犯錯(cuò)誤的概率不超過0.01的前提下認(rèn)為“課外體育達(dá)標(biāo)”與性別有關(guān)?

          課外體育不達(dá)標(biāo)

          課外體育達(dá)標(biāo)

          合計(jì)

          20

          110

          合計(jì)

          (Ⅱ)將上述調(diào)查所得到的頻率視為概率.現(xiàn)在從該校高三學(xué)生中,抽取3名學(xué)生,記被抽取的3名學(xué)生中的“課外體育達(dá)標(biāo)”學(xué)生人數(shù)為X,若每次抽取的結(jié)果是相互獨(dú)立的,求X的數(shù)學(xué)期望和方差.
          參考公式: ,其中n=a+b+c+d.
          參考數(shù)據(jù):

          P(K2≥k0

          0.10

          0.05

          0.025

          0.010

          0.005

          0.001

          k0

          2.706

          3.841

          5.024

          6.635

          7.879

          10.828

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】選修4-4:坐標(biāo)系與參數(shù)方程

          在平面直角坐標(biāo)系中, 為參數(shù)),以原點(diǎn)為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系,已知曲線.

          (1)求的普通方程及的直角坐標(biāo)方程,并說明它們分別表示什么曲線;

          2)若分別為 上的動(dòng)點(diǎn),且的最小值為2,求的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)函數(shù)f(x)是R上以5為周期的可導(dǎo)偶函數(shù),則曲線y=f(x)在x=5處的切線的斜率為(
          A.-
          B.0
          C.
          D.5

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)復(fù)數(shù)z=(x﹣1)+yi(x∈R,y≥0),若|z|≤1,則y≥x的概率為(
          A.
          B.
          C.
          D.

          查看答案和解析>>

          同步練習(xí)冊答案