【題目】在平面直角坐標(biāo)系中,
,
為
,
軸上兩個(gè)動(dòng)點(diǎn),點(diǎn)
在直線
上,且滿足
,
.
(1)求點(diǎn)的軌跡方程;
(2)記點(diǎn)的軌跡為曲線
,
為曲線
與
正半軸的交點(diǎn),
、
為曲線
上與
不重合的兩點(diǎn),且直線
與直線
的斜率之積為
,求證直線
經(jīng)過(guò)一個(gè)定點(diǎn),并求出該定點(diǎn)坐標(biāo)。
【答案】(1);(2)直線過(guò)定點(diǎn)
【解析】
(1)設(shè)出點(diǎn)P的坐標(biāo),分點(diǎn)P在線段上和線段的延長(zhǎng)線上兩種情況討論,根據(jù)題意得到線段AB的長(zhǎng),列式化簡(jiǎn)求得點(diǎn)P的軌跡方程;
(2)先明確直線MN的斜率不存在時(shí)對(duì)應(yīng)的情況,再求其斜率存在的時(shí)候,設(shè)出直線的方程,與橢圓方程聯(lián)立,利用題中的條件,建立等量關(guān)系式,求得其過(guò)的定點(diǎn).
(1)設(shè)點(diǎn),當(dāng)點(diǎn)P在線段AB上時(shí),
根據(jù),
,有
,此時(shí)
,
所以有,即
;
當(dāng)點(diǎn)P在線段外時(shí),根據(jù),
,
只能點(diǎn)P在線段BA是延長(zhǎng)線上,并且點(diǎn)A是線段BP的中點(diǎn),
設(shè),則有
,且有
,
所以有;
所以點(diǎn)P的軌跡方程為;
(2)當(dāng)直線的斜率不存在時(shí),設(shè)
:
則,
∴,不合題意.
②當(dāng)直線的斜率存在時(shí),設(shè)
:
,
,
聯(lián)立方程得
則
,
又
即
將,
代入上式得
∴直線過(guò)定點(diǎn).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是某超市一年中各月份的收入與支出單位:萬(wàn)元
情況的條形統(tǒng)計(jì)圖
已知利潤(rùn)為收入與支出的差,即利潤(rùn)
收入一支出,則下列說(shuō)法正確的是
A. 利潤(rùn)最高的月份是2月份,且2月份的利潤(rùn)為40萬(wàn)元
B. 利潤(rùn)最低的月份是5月份,且5月份的利潤(rùn)為10萬(wàn)元
C. 收入最少的月份的利潤(rùn)也最少
D. 收入最少的月份的支出也最少
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】1996年嘉祥被國(guó)家命名為“中國(guó)石雕之鄉(xiāng)”,2008年6月,嘉祥石雕登上了國(guó)家文化部公布的“第二批國(guó)家級(jí)非物質(zhì)文化遺產(chǎn)名錄”,嘉祥石雕文化產(chǎn)業(yè)園被國(guó)家文化部命名為“國(guó)家級(jí)文化產(chǎn)業(yè)示范基地”,近年來(lái),嘉祥石雕產(chǎn)業(yè)發(fā)展十分迅猛,產(chǎn)品暢銷全國(guó)各地及美國(guó)、日本、東南亞國(guó)家和地區(qū),嘉祥某石雕廠為嚴(yán)把質(zhì)量關(guān),對(duì)制作的每件石雕都請(qǐng)3位行家進(jìn)行質(zhì)量把關(guān),質(zhì)量把關(guān)程序如下:(i)若一件石雕3位行家都認(rèn)為質(zhì)量過(guò)關(guān),則該石雕質(zhì)量為優(yōu)秀級(jí);(ii)若僅有1位行家認(rèn)為質(zhì)量不過(guò)關(guān),再由另外2位行家進(jìn)行第二次質(zhì)量把關(guān),若第二次質(zhì)量把關(guān)這2位行家都認(rèn)為質(zhì)量過(guò)關(guān),則該石雕質(zhì)量為良好級(jí),若第二次質(zhì)量把關(guān)這2位行家中有1位或2位認(rèn)為質(zhì)量不過(guò)關(guān),則該石雕需返工重做.已知每一次質(zhì)量把關(guān)中一件石雕被1位行家認(rèn)為質(zhì)量不過(guò)關(guān)的概率均為,且每1位行家認(rèn)為石雕質(zhì)量是否過(guò)關(guān)相互獨(dú)立.則一件石雕質(zhì)量為優(yōu)秀級(jí)的概率為______ ;一件石雕質(zhì)量為良好級(jí)的概率為______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,
,
為
,
軸上兩個(gè)動(dòng)點(diǎn),點(diǎn)
在直線
上,且滿足
,
.
(1)求點(diǎn)的軌跡方程;
(2)記點(diǎn)的軌跡為曲線
,
為曲線
與
正半軸的交點(diǎn),
、
為曲線
上與
不重合的兩點(diǎn),且直線
與直線
的斜率之積為
,試探究
面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,底面
是梯形,
,
,
,
,側(cè)面
底面
.
(1)求證:平面平面
;
(2)若與底面
所成角為
,求二面角
的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是一個(gè)纜車示意圖,該纜車的半徑為4.8 m,圓上最低點(diǎn)與地面的距離為0.8 m,纜車每60 s轉(zhuǎn)動(dòng)一圈,圖中OA與地面垂直,以O(shè)A為始邊,逆時(shí)針轉(zhuǎn)動(dòng)θ角到OB,設(shè)B點(diǎn)與地面的距離為h m.
(1)求h與θ之間的函數(shù)解析式;
(2)設(shè)從OA開(kāi)始轉(zhuǎn)動(dòng),經(jīng)過(guò)t s達(dá)到OB,求h與t之間的函數(shù)解析式,并計(jì)算經(jīng)過(guò)45 s后纜車距離地面的高度.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓,直線
(1)若直線與圓O交于不同的兩點(diǎn)A, B,當(dāng)
時(shí),求k的值.
(2)若k=1,P是直線上的動(dòng)點(diǎn),過(guò)P作圓O的兩條切線PC、PD,切點(diǎn)為C、D,問(wèn):直線CD是否過(guò)定點(diǎn)?若過(guò)定點(diǎn),求出定點(diǎn)坐標(biāo);若不過(guò)定點(diǎn),說(shuō)明理由.
(3)若EF、GH為圓的兩條相互垂直的弦,垂足為M(1,
),求四邊形EGFH的面積的最大值
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)拋物線的焦點(diǎn)為
,準(zhǔn)線為
.已知以
為圓心,半徑為4的圓與
交于
、
兩點(diǎn),
是該圓與拋物線
的一個(gè)交點(diǎn),
.
(1)求的值;
(2)已知點(diǎn)的縱坐標(biāo)為
且在
上,
、
是
上異于點(diǎn)
的另兩點(diǎn),且滿足直線
和直線
的斜率之和為
,試問(wèn)直線
是否經(jīng)過(guò)一定點(diǎn),若是,求出定點(diǎn)的坐標(biāo),否則,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)是橢圓
上任一點(diǎn),點(diǎn)
到直線
的距離為
,到點(diǎn)
的距離為
,且
.直線
與橢圓
交于不同兩點(diǎn)
(
都在
軸上方),且
.
(1)求橢圓的方程;
(2)當(dāng)為橢圓與
軸正半軸的交點(diǎn)時(shí),求直線
方程;
(3)對(duì)于動(dòng)直線,是否存在一個(gè)定點(diǎn),無(wú)論
如何變化,直線
總經(jīng)過(guò)此定點(diǎn)?若存在,求出該定點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com