日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 設(shè)函數(shù)f(x)=2x3-3(a+1)x2+6ax,a∈R.

          (1)當(dāng)a=1時(shí),求證:f(x)為單調(diào)增函數(shù);

          (2)當(dāng)x∈[1,3]時(shí),f(x)的最小值為4,求a的值.

          (1)證明:當(dāng)a=1時(shí),f(x)=2x3-6x2+6x,f′(x)=6x2-12x+6,

          ∴f′(x)=6(x-1)2≥0.

          故f(x)為單調(diào)增函數(shù).

          (用定義法證明單調(diào)性參照給分)

          (2)解:f′(x)=6(x-1)(x-a).

          ①當(dāng)a≤1時(shí),f(x)在區(qū)間[1,3]上是單調(diào)增函數(shù),最小值為f(1).

          由于f(1)=4,即2-3(a+1)+6a=4.解得a=>1(舍去).

          ②當(dāng)1<a<3時(shí),f(x)在區(qū)間(1,a)上是減函數(shù),在區(qū)間(a,3)上是增函數(shù),故f(a)為最小值.

          f(a)=4,即a3-3a2+4=0.

          解得a=-1(舍去),a=2.

          ③當(dāng)a≥3時(shí),f(x)在區(qū)間(1,a)上是減函數(shù),f(3)為最小值.

          f(3)=4,即54-27(a+1)+18a=4.解得a=<3(舍去).

          綜上所述,a=2.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          設(shè)函數(shù)f(x)=
          2x+1x2+2

          (Ⅰ)求f(x)的單調(diào)區(qū)間和極值;
          (Ⅱ)若對(duì)一切x∈R,-3≤af(x)+b≤3,求a-b的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          設(shè)函數(shù)f(x)=
          2x
          |x|+1
          (x∈R)
          ,區(qū)間M=[a,b](其中a<b),集合N={y|y=f(x),x∈M},則使M=N成立的實(shí)數(shù)對(duì)(a,b)有(  )

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (2011•重慶三模)設(shè)函數(shù)f(x)=
          2x+3
          3x-1
          ,則f-1(1)
          =( 。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          設(shè)函數(shù)f(x)=
          2
          x+2
          ,點(diǎn)A0表示原點(diǎn),點(diǎn)An=[n,f(n)](n∈N*).若向量
          an
          =
          A0A1
          +
          A1A2
          +…+
          An-1An
          ,θn
          an
          i
          的夾角[其中
          i
          =(1,0)]
          ,設(shè)Sn=tanθ1+tanθ2+…+tanθn,則
          lim
          n→∞
          Sn
          =
          3
          4
          2
          3
          4
          2

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          設(shè)函數(shù)f(x)=
          2x-3,x≥1
          1-3x
          x
          ,0<x<1
          ,若f(x0)=1,則x0等于(  )

          查看答案和解析>>

          同步練習(xí)冊(cè)答案