日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,在四棱錐中,為正三角形,平面,的中點.

          (1)求證:平面
          (2)求證:平面.

          (1)詳見解析;(2)詳見解析.

          解析試題分析:(1)本題中先取的中點,然后根據(jù)題意易證,從而四邊形是平行四邊形,這樣就可得到,最后就是由線面平行的判定定理可得結論;(2)根據(jù)(1)中所證得的,要證平面,只須證平面,由題中的條件不難證明,最后由線面垂直的判定定理可得平面,根據(jù),可得結論.
          試題解析:證明: (1)取的中點,連接

                            2分
          ,則四邊形是平行四邊形
          ,平面內(nèi),所以平面      6分
          (2) 平面,,所以平面,而,所以
          因為的中點且為正三角形,所以
          ,所以平面
                平面                  12分.
          考點:1.線面平行的證明;2.線面垂直的證明.

          練習冊系列答案
          相關習題

          科目:高中數(shù)學 來源: 題型:解答題

          如圖所示,四邊形EFGH所在平面為三棱錐A-BCD的一個截面,四邊形EFGH為平行四邊形.

          (1)求證:AB∥平面EFGH,CD∥平面EFGH.
          (2)若AB=4,CD=6,求四邊形EFGH周長的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:解答題

          如圖,直三棱柱中,點上一點.

          ⑴若點的中點,求證平面;
          ⑵若平面平面,求證.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:解答題

          如圖,已知三棱錐的側棱與底面垂直,,, M、N分別是的中點,點P在線段上,且,

          (1)證明:無論取何值,總有.
          (2)當時,求平面與平面所成銳二面角的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:解答題

          如圖,在正方體中,

          (1)求證:;
          (2)求直線與直線BD所成的角

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:解答題

          已知直三棱柱中,,中點,中點.

          (1)求三棱柱的體積;
          (2)求證:;
          (3)求證:∥面.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:解答題

          在正方體中,、為棱、的中點.

          (1)求證:∥平面;
          (2)求證:平面⊥平面

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:解答題

          已知三棱柱的側棱長和底面邊長均為2,在底面ABC內(nèi)的射影O為底面△ABC的中心,如圖所示:

          (1)聯(lián)結,求異面直線所成角的大;
          (2)聯(lián)結、,求四棱錐的體積.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:解答題

          如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,底面ABCD是菱形,點O是對角線ACBD的交點,MPD的中點,AB=2,∠BAD=60°.

          (1)求證:OM∥平面PAB;
          (2)求證:平面PBD⊥平面PAC
          (3)當四棱錐P-ABCD的體積等于時,求PB的長.

          查看答案和解析>>

          同步練習冊答案