日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 設(shè)a>0且a≠1函數(shù)f(x)=,g(x)=1+

          (1)求f(x)和g(x)的定義域的公共部分D,并判定f(x)在D內(nèi)的單調(diào)性;

          (2)若[m,n]D,且f(x)在[m,n]上的值域恰為[g(n),g(m)],證明方程f(x)=g(x)必有大于3的兩個(gè)相異實(shí)根,求a的取值范圍.

          答案:
          解析:

          (1)由解出x>3∴D={x|x>3}

          任取,∈D,使3<,設(shè)μ(x)=

          則μ()-μ()=

          ∵3<,∴μ()-μ()<0

          當(dāng)0<a<1時(shí),

          ∴f(x)在D上是單調(diào)遞減函數(shù).

          當(dāng)a>1時(shí),f(x)是D上的單調(diào)遞增函數(shù).

          (2)∵f(x)在[m,n]上的值域是[g(n),g(m)]

          ∴g(n)<g(m),即

          ∵m<n,m-1<n-1,∴0<a<1

          從而知f(x)在[m,n]上單調(diào)遞減.

          ∴f(m)=g(m),f(n)=g(n),其中3<m<n即方程f(x)=g(x)有大于3的兩個(gè)相異實(shí)根

          =1+有大于3的兩個(gè)相異實(shí)根.

          整理知=a(x-1)(0<a<1)

          可推得+(2a-1)x+3(1-a)=0有大于3的兩個(gè)相異實(shí)根(0<a<1)

          必有

          解出0<a<


          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知奇函數(shù)f(x),偶函數(shù)g(x)滿(mǎn)足f(x)+g(x)=ax(a>0且a≠1).
          (1)求證:f(2x)=2f(x)g(x);
          (2)設(shè)f(x)的反函數(shù)f-1(x),當(dāng)a=
          2
          -1
          時(shí),比較f-1[g(x)]與-1的大小,證明你的結(jié)論;
          (3)若a>1,n∈N*,且n≥2,比較f(n)與nf(1)的大小,并證明你的結(jié)論.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (2011•嘉定區(qū)三模)已知k∈R,a>0且a≠1,b>0且b≠1,函數(shù)f(x)=ax+k•bx
          (1)如果實(shí)數(shù)a、b滿(mǎn)足a>1,ab=1,試判斷函數(shù)f(x)的奇偶性,并說(shuō)明理由;
          (2)設(shè)a>1>b>0,k≤0,判斷函數(shù)f(x)在R上的單調(diào)性并加以證明;
          (3)若a=2,b=
          12
          ,且k>0,問(wèn)函數(shù)f(x)的圖象是不是軸對(duì)稱(chēng)圖形?如果是,求出函數(shù)f(x)圖象的對(duì)稱(chēng)軸;如果不是,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:江蘇省鹽城中學(xué)2008-2009學(xué)年度高一上學(xué)期期中考試(數(shù)學(xué)) 題型:022

          設(shè)a>0且a≠1函數(shù)f(x)=logax在區(qū)間[a,2a]上的最大值與最小值之和為3,則a=________.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          已知奇函數(shù)f(x),偶函數(shù)g(x)滿(mǎn)足f(x)+g(x)=ax(a>0且a≠1).
          (1)求證:f(2x)=2f(x)g(x);
          (2)設(shè)f(x)的反函數(shù)f-1(x),當(dāng)a=
          2
          -1
          時(shí),比較f-1[g(x)]與-1的大小,證明你的結(jié)論;
          (3)若a>1,n∈N*,且n≥2,比較f(n)與nf(1)的大小,并證明你的結(jié)論.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案