【題目】如圖空間四邊形ABCD,E、F、G、H分別為AB、AD、CB、CD的中點(diǎn)且AC=BD,AC⊥BD,試判斷四邊形EFGH的形狀,并證明.
【答案】證明:四邊形EFGH為正方形.下面給出證明:
∵E、F、G、H分別為AB、AD、CB、CD的中點(diǎn),
∴,
,
∴.
∴四邊形EFGH是平行四邊形.
同理可證:.
∵AC=BD,BD⊥AC,
∴EF=EG,EF⊥EG.
∴平行四邊形EFGH是正方形.
【解析】由于E、F、G、H分別為AB、AD、CB、CD的中點(diǎn),利用三角形的中位線定理可證明:四邊形EFGH是平行四邊形.
由AC=BD,BD⊥AC,可證明:EF=EG,EF⊥EG.因此四邊形EFGH是正方形.
【考點(diǎn)精析】利用平行公理對題目進(jìn)行判斷即可得到答案,需要熟知平行于同一條直線的兩條直線互相平行.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖1所示,在等腰梯形中,
.把
沿
折起,使得
,得到四棱錐
.如圖2所示.
(1)求證:面面
;
(2)求平面與平面
所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù).
(1)當(dāng)時,試求
的單調(diào)增區(qū)間;
(2)試求在
上的最大值;
(3)當(dāng)時,求證:對于
恒成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出下列四個命題:
①三點(diǎn)確定一個平面;
②三條兩兩相交的直線確定一個平面;
③在空間上,與不共面四點(diǎn)A,B,C,D距離相等的平面恰有7個;
④兩個相交平面把空間分成四個區(qū)域.
其中真命題的序號是 (寫出所有真命題的序號).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,幾何體由一個正三棱柱截去一個三棱錐而得,
,
,
,
平面
,
為
的中點(diǎn),
為棱
上一點(diǎn),且
平面
.
(1)若在棱
上,且
,證明:
平面
;
(2)過作平面
的垂線,垂足為
,確定
的位置(說明作法及理由),并求線段
的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,A,B是海面上位于東西方向相距5(3+)海里的兩個觀測點(diǎn),現(xiàn)位于A點(diǎn)北偏東45°,B點(diǎn)北偏西60°的D點(diǎn)有一艘輪船發(fā)出求救信號,位于B點(diǎn)南偏西60°且與B點(diǎn)相距20
海里的C點(diǎn)的救援船立即即前往營救,其航行速度為30海里/小時,該救援船到達(dá)D點(diǎn)需要多長時間?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)二次函數(shù)f(x)=ax2+bx+c的圖象過點(diǎn)(0,1)和(1,4),且對于任意的實數(shù)x,不等式f(x)≥4x恒成立.
(1)求函數(shù)f(x)的表達(dá)式;
(2)設(shè)g(x)=kx+1,若F(x)=g(x)﹣f(x),求F(x)在[1,2]上的最小值;
(3)設(shè)g(x)=kx+1,若G(x)=在區(qū)間[1,2]上是增函數(shù),求實數(shù)k的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com