【題目】如圖,已知拋物線:
和⊙
,過拋線
上一點(diǎn)
作兩條直線與⊙
相切于A、B兩點(diǎn),分別交拋物線于E、F兩點(diǎn),圓心點(diǎn)
到拋物線準(zhǔn)線的距離為
.
(Ⅰ)求拋物線的方程;
(Ⅱ)當(dāng) 的角平分線垂直x軸時(shí),求直線EF的斜率;
(Ⅲ)若直線AB在軸上的截距為
,求
的最小值.
【答案】(Ⅰ) ;(Ⅱ)-
;(Ⅲ)-11.
【解析】
(Ⅰ)由即可得解;
(Ⅱ)當(dāng)的角平分線垂直
軸時(shí),點(diǎn)
,由
及
化簡(jiǎn)即可得解;
(Ⅲ)設(shè)點(diǎn) ,以
為圓心,
為半徑的圓方程為
與⊙
方程:
相減可得直線
,令
利用函數(shù)單調(diào)性即可得解.
(Ⅰ)∵點(diǎn)到拋物線準(zhǔn)線的距離為
,
∴ ,即拋物線
的方程為
.
(Ⅱ)∵當(dāng)的角平分線垂直
軸時(shí),點(diǎn)
,
∴
設(shè) ,
,
∴ , ∴
∴ .
.
(Ⅲ)設(shè)點(diǎn) ,
,
.
以為圓心,
為半徑的圓方程為
,……①
⊙方程:
.……②
①-②得:
直線的方程為
.
當(dāng)時(shí),直線
在
軸上的截距
,
∵關(guān)于
的函數(shù)在
單調(diào)遞增, ∴
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐中,底面
為直角梯形,
,
,平面
底面
,
,
.
(Ⅰ)判斷平面與平面
是否垂直,并給出證明;
(Ⅱ)若,
,
,求二面角
的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(1)若函數(shù)在x=1時(shí)取得極值,求實(shí)數(shù)a的值;
(2)當(dāng)0<a<1時(shí),求零點(diǎn)的個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)是橢圓C:
上的一點(diǎn),橢圓C的離心率與雙曲線
的離心率互為倒數(shù),斜率為
直線l交橢圓C于B,D兩點(diǎn),且A、B、D三點(diǎn)互不重合.
(1)求橢圓C的方程;
(2)若分別為直線AB,AD的斜率,求證:
為定值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),
.
(1)當(dāng)時(shí),求曲線
在點(diǎn)
處的切線方程;
(2)求函數(shù)f(x)的極值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)、
分別是橢圓
的左、右焦點(diǎn).若
是該橢圓上的一個(gè)動(dòng)點(diǎn),
的最大值為1.
(1)求橢圓的方程;
(2)設(shè)直線與橢圓
交于
兩點(diǎn),點(diǎn)
關(guān)于
軸的對(duì)稱點(diǎn)為
(
與
不重合),則直線
與
軸是否交于一個(gè)定點(diǎn)?若是,請(qǐng)寫出定點(diǎn)坐標(biāo),并證明你的結(jié)論;若不是,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù) ①若
,則
的零點(diǎn)有_____個(gè);②若
的值域?yàn)?/span>
,則實(shí)數(shù)
的取值范圍是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)有限數(shù)列,定義集合
為數(shù)列
的伴隨集合.
(Ⅰ)已知有限數(shù)列和數(shù)列
.分別寫出
和
的伴隨集合;
(Ⅱ)已知有限等比數(shù)列,求
的伴隨集合
中各元素之和
;
(Ⅲ)已知有限等差數(shù)列,判斷
是否能同時(shí)屬于
的伴隨集合
,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】根據(jù)統(tǒng)計(jì),某蔬菜基地西紅柿畝產(chǎn)量的增加量(百千克)與某種液體肥料每畝使用量
(千克)之間的對(duì)應(yīng)數(shù)據(jù)的散點(diǎn)圖,如圖所示.
(1)依據(jù)數(shù)據(jù)的散點(diǎn)圖可以看出,可用線性回歸模型擬合與
的關(guān)系,請(qǐng)計(jì)算相關(guān)系數(shù)
并加以說明(若
,則線性相關(guān)程度很高,可用線性回歸模型擬合);
(2)求關(guān)于
的回歸方程,并預(yù)測(cè)液體肥料每畝使用量為
千克時(shí),西紅柿畝產(chǎn)量的增加量約為多少?
附:相關(guān)系數(shù)公式,回歸方程
中斜率和截距的最小二乘估計(jì)公式分別為:
,
.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com