日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 選修4-1:
          如圖,點(diǎn)A是以線段BC為直徑的圓O上一點(diǎn),AD⊥BC于點(diǎn)D,過(guò)點(diǎn)B作圓O的切線,與CA的延長(zhǎng)線相交于點(diǎn)E,點(diǎn)G是AD的中點(diǎn),連接CG并延長(zhǎng)與BE相交于點(diǎn)F,延長(zhǎng)AF與CB的延長(zhǎng)線相交于點(diǎn)P.
          (1)求證:BF=EF;
          (2)求證:PA是圓O的切線.

          【答案】分析:(1)利用平行線截三角形得相似三角形,得△BFC∽△DGC且△FEC∽△GAC,得到對(duì)應(yīng)線段成比例,再結(jié)合已知條件可得BF=EF;
          (2)利用直角三角形斜邊上的中線的性質(zhì)和等邊對(duì)等角,得到∠FAO=∠EBO,結(jié)合BE是圓的切線,得到PA⊥OA,從而得到PA是圓O的切線.
          解答:證明:(1)∵BC是圓O的直徑,BE是圓O的切線,∴EB⊥BC.
          又∵AD⊥BC,∴AD∥BE.
          可得△BFC∽△DGC,△FEC∽△GAC.
          ,得
          ∵G是AD的中點(diǎn),即DG=AG.
          ∴BF=EF.
          (2)連接AO,AB.
          ∵BC是圓O的直徑,∴∠BAC=90°.
          由(1)得:在Rt△BAE中,F(xiàn)是斜邊BE的中點(diǎn),
          ∴AF=FB=EF,可得∠FBA=∠FAB.
          又∵OA=OB,∴∠ABO=∠BAO.
          ∵BE是圓O的切線,
          ∴∠EBO=90°,得∠EBO=∠FBA+∠ABO=∠FAB+∠BAO=∠FAO=90°,
          ∴PA⊥OA,由圓的切線判定定理,得PA是圓O的切線.
          點(diǎn)評(píng):本題求證直線是圓的切線,著重考查了直角三角形的性質(zhì)、相似三角形的判定與性質(zhì)和圓的切線判定定理等知識(shí),屬于中檔題.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          選修4-1:
          如圖,點(diǎn)A是以線段BC為直徑的圓O上一點(diǎn),AD⊥BC于點(diǎn)D,過(guò)點(diǎn)B作圓O的切線,與CA的延長(zhǎng)線相交于點(diǎn)E,點(diǎn)G是AD的中點(diǎn),連接CG并延長(zhǎng)與BE相交于點(diǎn)F,延長(zhǎng)AF與CB的延長(zhǎng)線相交于點(diǎn)P.
          (1)求證:BF=EF;
          (2)求證:PA是圓O的切線.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

          選修4-1:
          如圖,點(diǎn)A是以線段BC為直徑的圓O上一點(diǎn),AD⊥BC于點(diǎn)D,過(guò)點(diǎn)B作圓O的切線,與CA的延長(zhǎng)線相交于點(diǎn)E,點(diǎn)G是AD的中點(diǎn),連接CG并延長(zhǎng)與BE相交于點(diǎn)F,延長(zhǎng)AF與CB的延長(zhǎng)線相交于點(diǎn)P.
          (1)求證:BF=EF;
          (2)求證:PA是圓O的切線.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年河南師大附中高三(上)11月月考數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

          選修4-1:
          如圖,點(diǎn)A是以線段BC為直徑的圓O上一點(diǎn),AD⊥BC于點(diǎn)D,過(guò)點(diǎn)B作圓O的切線,與CA的延長(zhǎng)線相交于點(diǎn)E,點(diǎn)G是AD的中點(diǎn),連接CG并延長(zhǎng)與BE相交于點(diǎn)F,延長(zhǎng)AF與CB的延長(zhǎng)線相交于點(diǎn)P.
          (1)求證:BF=EF;
          (2)求證:PA是圓O的切線.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年河南師大附中高三(上)11月月考數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

          選修4-1:
          如圖,點(diǎn)A是以線段BC為直徑的圓O上一點(diǎn),AD⊥BC于點(diǎn)D,過(guò)點(diǎn)B作圓O的切線,與CA的延長(zhǎng)線相交于點(diǎn)E,點(diǎn)G是AD的中點(diǎn),連接CG并延長(zhǎng)與BE相交于點(diǎn)F,延長(zhǎng)AF與CB的延長(zhǎng)線相交于點(diǎn)P.
          (1)求證:BF=EF;
          (2)求證:PA是圓O的切線.

          查看答案和解析>>