日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 在平面直角坐標(biāo)系xOy中,過定點(diǎn)C(p,0)作直線與拋物線y2=2px(p>0)相交于A,B兩點(diǎn),如圖,設(shè)動(dòng)點(diǎn)A(x1,y1)、B(x2,y2).
          (Ⅰ)求證:y1y2為定值;
          (Ⅱ)若點(diǎn)D是點(diǎn)C關(guān)于坐標(biāo)原點(diǎn)O的對(duì)稱點(diǎn),求△ADB面積的最小值;
          (Ⅲ)是否存在平行于y軸的定直線l,使得l被以AC為直徑的圓截得的弦長(zhǎng)恒為定值?若存在,求出l的方程;若不存在,請(qǐng)說明理由.

          【答案】分析:(Ⅰ)分情況討論:當(dāng)直線AB垂直于x軸時(shí),計(jì)算得y1y2=-2p2;當(dāng)直線AB不垂直于x軸時(shí),設(shè)直線AB的方程為:y=k(x-p),代入拋物線方程得ky2-2py-2p2k=0,因此有y1y2=-2p2為定值.

          (II)D(-p,0),DC=2p,,當(dāng)AB⊥x軸時(shí),=.當(dāng)直線AB不垂直x軸時(shí),,,由此能求出△ADB面積的最小值.
          (III)設(shè)存在平行于y軸的直線l,方程為x=t,M(x1,y1),圓心為C(x,y),l被圓C截得的弦長(zhǎng)為q,則由圓的幾何性質(zhì)可得 ==.由此能求出存在直線l,其方程為
          解答:解:(Ⅰ)當(dāng)直線AB垂直于x軸時(shí),y1=p,y2=-p,因此y1y2=-2p2
          (定值);….(1分)
          當(dāng)直線AB不垂直于x軸時(shí),設(shè)直線AB的方程為:y=k(x-p),代入拋物線方程得;
          ky2-2py-2p2k=0
          因此有y1y2=-2p2為定值.…(4分)
          (Ⅱ)D(-p,0),∴DC=2p,

          當(dāng)AB⊥x軸時(shí),=
          當(dāng)直線AB不垂直x軸時(shí),
          ,

          =
          ,
          綜上所述,△ADB面積的最小值是
          (III)設(shè)存在平行于y軸的直線l,方程為x=t,M(x1,y1),圓心為C(x,y
          l被圓C截得的弦長(zhǎng)為q,則由圓的幾何性質(zhì)可得:
          ==
          當(dāng) 時(shí),q=p為定值
          故存在這樣的直線l,其方程為 (12分)
          點(diǎn)評(píng):本題考查弦長(zhǎng)的計(jì)算和直線與拋物線位置關(guān)系的綜合運(yùn)用,解題時(shí)要注意分類討論思想和弦長(zhǎng)公式的合理運(yùn)用,注意合理地進(jìn)行等價(jià)轉(zhuǎn)化.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          在平面直角坐標(biāo)系xoy中,已知圓心在直線y=x+4上,半徑為2
          2
          的圓C經(jīng)過坐標(biāo)原點(diǎn)O,橢圓
          x2
          a2
          +
          y2
          9
          =1(a>0)
          與圓C的一個(gè)交點(diǎn)到橢圓兩焦點(diǎn)的距離之和為10.
          (1)求圓C的方程;
          (2)若F為橢圓的右焦點(diǎn),點(diǎn)P在圓C上,且滿足PF=4,求點(diǎn)P的坐標(biāo).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖,在平面直角坐標(biāo)系xOy中,銳角α和鈍角β的終邊分別與單位圓交于A,B兩點(diǎn).若點(diǎn)A的橫坐標(biāo)是
          3
          5
          ,點(diǎn)B的縱坐標(biāo)是
          12
          13
          ,則sin(α+β)的值是
          16
          65
          16
          65

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          在平面直角坐標(biāo)系xOy中,若焦點(diǎn)在x軸的橢圓
          x2
          m
          +
          y2
          3
          =1
          的離心率為
          1
          2
          ,則m的值為
          4
          4

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2013•泰州三模)選修4-4:坐標(biāo)系與參數(shù)方程
          在平面直角坐標(biāo)系xOy中,已知A(0,1),B(0,-1),C(t,0),D(
          3t
          ,0)
          ,其中t≠0.設(shè)直線AC與BD的交點(diǎn)為P,求動(dòng)點(diǎn)P的軌跡的參數(shù)方程(以t為參數(shù))及普通方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2013•東莞一模)在平面直角坐標(biāo)系xOy中,已知橢圓C:
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)
          的左焦點(diǎn)為F1(-1,0),且橢圓C的離心率e=
          1
          2

          (1)求橢圓C的方程;
          (2)設(shè)橢圓C的上下頂點(diǎn)分別為A1,A2,Q是橢圓C上異于A1,A2的任一點(diǎn),直線QA1,QA2分別交x軸于點(diǎn)S,T,證明:|OS|•|OT|為定值,并求出該定值;
          (3)在橢圓C上,是否存在點(diǎn)M(m,n),使得直線l:mx+ny=2與圓O:x2+y2=
          16
          7
          相交于不同的兩點(diǎn)A、B,且△OAB的面積最大?若存在,求出點(diǎn)M的坐標(biāo)及對(duì)應(yīng)的△OAB的面積;若不存在,請(qǐng)說明理由.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案