日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 設(shè)平面向量a=(x,y),b=(x2,y2),c=(1,-1),d=(,-),若a·c=b·d=1,則這樣的向量a的個(gè)數(shù)是(    )

          A.0                    B.1                     C.2                    D.4

          答案:A

          【解析】由已知條件可得a·c=x-y=1;b·d=1.∴,由直線x-y=1與雙曲線=1無(wú)交點(diǎn)可得此方程組無(wú)解,即得向量a的個(gè)數(shù)為0.故應(yīng)選A.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          設(shè)平面向量
          a
          =(cosx,sinx),
          b
          =(cosx+2
          3
          ,sinx)
          ,
          c
          =(sinα,cosα)
          ,x∈R,
          (Ⅰ)若
          a
          c
          ,求cos(2x+2α)的值;
          (Ⅱ)若x∈(0,
          π
          2
          )
          ,證明
          a
          b
          不可能平行;
          (Ⅲ)若α=0,求函數(shù)f(x)=
          a
          •(
          b
          -2
          c
          )
          的最大值,并求出相應(yīng)的x值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          設(shè)平面向量
          a
          =(coxx,sinx)
          ,
          b
          =(
          3
          2
          ,
          1
          2
          )
          ,函數(shù)f(x)=
          a
          b
          +1
          .求:
          ①求函數(shù)f(x)的值域;
          ②求函數(shù)f(x)的單調(diào)增區(qū)間.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          設(shè)平面向量
          a
          =(cosx,sinx),
          b
          =(cosx+2
          3
          ,sinx),x∈R,
          (1)若x∈(0,
          π
          2
          ),證明:
          a
          b
          不可能平行;
          (2)若
          c
          =(0,1),求函數(shù)f(x)=
          a
          •(
          b
          -2
          c
          )的最大值,并求出相應(yīng)的x值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (2014•瀘州一模)設(shè)平面向量
          a
          =(
          3
          sinx,2cosx),
          b
          =(2sin(
          π
          2
          -x),cosx),已知f(x)=
          a
          b
          +m在[0,
          π
          2
          ]
          上的最大值為6.
          (Ⅰ)求實(shí)數(shù)m的值;
          (Ⅱ)若f(
          π
          2
          +x0)=
          14
          5
          x0∈[
          π
          4
          ,
          π
          2
          ]
          .求cos2x0的值.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案