日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知函數(shù)處的切線斜率為.

          (1)若函數(shù)上單調(diào),求實(shí)數(shù)的最大值;

          (2)當(dāng)時(shí),若存在不等的使得,求實(shí)數(shù)的取值范圍.

          【答案】(1);(2).

          【解析】

          (1)先根據(jù)切線的斜率求出,再根據(jù)函數(shù)單調(diào),得到恒成立,求出b的最大值.(2)轉(zhuǎn)化為存在不等的,且使得 ,得函數(shù)上單調(diào)遞增.結(jié)合(1)進(jìn)而得到k>0.

          (1)函數(shù)處的切線斜率為

          解得.

          所以,故

          因?yàn)楹瘮?shù)上單調(diào)

          上恒成立.

          顯然上不恒成立.

          所以恒成立即可.

          因?yàn)?/span>

          可知上單減,單增

          ,所以實(shí)數(shù)的最大值為1.

          (2)當(dāng)時(shí),由(1)知函數(shù)上單調(diào)遞增

          不妨設(shè),使得

          即為存在不等的,且使得

          .

          其否定為:任意,都有

          即:函數(shù)上單調(diào)遞增.

          由(1)知:

          所以若存在不等的使得

          實(shí)數(shù)的取值范圍為.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在四棱錐中,底面為平行四邊形, 為側(cè)棱的中點(diǎn).

          (Ⅰ)求證: ∥平面

          (Ⅱ)若,,

          求證:平面平面

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】大眾創(chuàng)業(yè),萬眾創(chuàng)新是李克強(qiáng)總理在本屆政府工作報(bào)告中向全國人民發(fā)出的口號.某生產(chǎn)企業(yè)積極響應(yīng)號召,大力研發(fā)新產(chǎn)品,為了對新研發(fā)的一批產(chǎn)品進(jìn)行合理定價(jià),將該產(chǎn)品按事先擬定的價(jià)格進(jìn)行試銷,得到一組銷售數(shù)據(jù),如表所示:

          試銷單價(jià)x()

          4

          5

          6

          7

          8

          產(chǎn)品銷量y()

          q

          85

          82

          80

          75

          已知

          1)求出q的值;

          2)已知變量具有線性相關(guān)關(guān)系,求產(chǎn)品銷量y(件)關(guān)于試銷單價(jià)x(元)的線性回歸方程;

          3)假設(shè)試銷單價(jià)為10元,試估計(jì)該產(chǎn)品的銷量.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)fxgx)分別是定義在R上的偶函數(shù)和奇函數(shù),且fx+gx=23x

          1)證明:fx-gx=23-x,并求函數(shù)fx),gx)的解析式;

          2)解關(guān)于x不等式:gx2+2x+gx-4)>0;

          3)若對任意xR,不等式f2x)≥mfx-4恒成立,求實(shí)數(shù)m的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】經(jīng)調(diào)查統(tǒng)計(jì),網(wǎng)民在網(wǎng)上光顧某淘寶小店,經(jīng)過一番瀏覽后,對該店鋪中的三種商品有購買意向.該淘寶小店推出買一種送5元優(yōu)惠券的活動(dòng).已知某網(wǎng)民購買商品的概率分別為,,,至少購買一種的概率為,最多購買兩種的概率為.假設(shè)該網(wǎng)民是否購買這三種商品相互獨(dú)立.

          (1)求該網(wǎng)民分別購買兩種商品的概率;

          2)用隨機(jī)變量表示該網(wǎng)民購買商品所享受的優(yōu)惠券錢數(shù),求的分布列.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某種產(chǎn)品的廣告費(fèi)支出x(單位:百萬元)與銷售額y(單位:百萬元)之間有如下的對應(yīng)數(shù)據(jù):

          x

          2

          4

          5

          6

          8

          y

          30

          40

          60

          50

          70

          1)畫出散點(diǎn)圖;

          2)求y關(guān)于x的線性回歸方程.

          3)如果廣告費(fèi)支出為一千萬元,預(yù)測銷售額大約為多少百萬元?

          參考公式用最小二乘法求線性回歸方程系數(shù)公式:,.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】隨著經(jīng)濟(jì)模式的改變,微商和電商已成為當(dāng)今城鄉(xiāng)一種新型的購銷平臺.已知經(jīng)銷某種商品的電商在任何一個(gè)銷售季度內(nèi),每售出噸該商品可獲利潤萬元,未售出的商品,每噸虧損萬元.根據(jù)往年的銷售經(jīng)驗(yàn),得到一個(gè)銷售季度內(nèi)市場需求量的頻率分布直方圖如圖所示.已知電商為下一個(gè)銷售季度籌備了噸該商品.現(xiàn)以(單位:噸,)表示下一個(gè)銷售季度的市場需求量,(單位:萬元)表示該電商下一個(gè)銷售季度內(nèi)經(jīng)銷該商品獲得的利潤.

          1)將表示為的函數(shù),求出該函數(shù)表達(dá)式;

          2)根據(jù)直方圖估計(jì)利潤不少于57萬元的概率;

          3)根據(jù)頻率分布直方圖,估計(jì)一個(gè)銷售季度內(nèi)市場需求量的平均數(shù)與中位數(shù)的大。ūA舻叫(shù)點(diǎn)后一位).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】若函數(shù)對定義域內(nèi)的每一個(gè)值,在其定義域內(nèi)都存在唯一的,使成立,則該函數(shù)為“依附函數(shù)”.

          (1)判斷函數(shù)是否為“依附函數(shù)”,并說明理由;

          (2)若函數(shù)在定義域上“依附函數(shù)”,求的取值范圍;

          (3)已知函數(shù)在定義域上為“依附函數(shù)”.若存在實(shí)數(shù),使得對任意的,不等式都成立,求實(shí)數(shù)的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某行業(yè)主管部門為了解本行業(yè)中小企業(yè)的生產(chǎn)情況,隨機(jī)調(diào)查了100個(gè)企業(yè),得到這些企業(yè)第一季度相對于前一年第一季度產(chǎn)值增長率y的頻數(shù)分布表.

          的分組

          企業(yè)數(shù)

          2

          24

          53

          14

          7

          1)分別估計(jì)這類企業(yè)中產(chǎn)值增長率不低于40%的企業(yè)比例、產(chǎn)值負(fù)增長的企業(yè)比例;

          2)求這類企業(yè)產(chǎn)值增長率的平均數(shù)與標(biāo)準(zhǔn)差的估計(jì)值(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值為代表).(精確到0.01

          附:.

          查看答案和解析>>

          同步練習(xí)冊答案