日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (2013•海淀區(qū)一模)在△ABC中,若a=4,b=2,cosA=
          14
          ,則c=
          4
          4
          分析:由余弦定理可得16=4+c2-4c•
          1
          4
          ,解方程求得c的值.
          解答:解:在△ABC中,∵a=4,b=2,cosA=
          1
          4
          ,由余弦定理可得 a2=b2+c2-2bc•cosA,
          即 16=4+c2-4c•
          1
          4
          ,化簡可得 (c-4)(c+3)=0,解得 c=4,或 c=-3(舍去),
          故答案為 4.
          點評:本題主要考查余弦定理的應用,一元二次方程的解法,屬于中檔題.
          練習冊系列答案
          相關習題

          科目:高中數(shù)學 來源: 題型:

          (2013•海淀區(qū)一模)已知a>0,下列函數(shù)中,在區(qū)間(0,a)上一定是減函數(shù)的是( 。

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          (2013•海淀區(qū)一模)在四棱錐P-ABCD中,PA⊥平面ABCD,△ABC是正三角形,AC與BD的交點M恰好是AC中點,又PA=AB=4,∠CDA=120°,點N在線段PB上,且PN=
          2

          (Ⅰ)求證:BD⊥PC;
          (Ⅱ)求證:MN∥平面PDC;
          (Ⅲ)求二面角A-PC-B的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          (2013•海淀區(qū)一模)在四棱錐P-ABCD中,PA⊥平面ABCD,△ABC是正三角形,AC與BD的交點M恰好是AC中點,又∠CAD=30°,PA=AB=4,點N在線段PB上,且
          PN
          NB
          =
          1
          3

          (Ⅰ)求證:BD⊥PC;
          (Ⅱ)求證:MN∥平面PDC;
          (Ⅲ)設平面PAB∩平面PCD=l,試問直線l是否與直線CD平行,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          (2013•海淀區(qū)一模)函數(shù)f(x)=
          13
          x3-kx,其中實數(shù)k為常數(shù).
          (I) 當k=4時,求函數(shù)的單調(diào)區(qū)間;
          (II) 若曲線y=f(x)與直線y=k只有一個交點,求實數(shù)k的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          (2013•海淀區(qū)一模)已知圓M:(x-
          2
          2+y2=
          7
          3
          ,若橢圓C:
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)的右頂點為圓M的圓心,離心率為
          2
          2

          (I)求橢圓C的方程;
          (II)已知直線l:y=kx,若直線l與橢圓C分別交于A,B兩點,與圓M分別交于G,H兩點(其中點G在線段AB上),且|AG|=|BH|,求k的值.

          查看答案和解析>>

          同步練習冊答案