日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 在極坐標(biāo)系中,曲線C的極坐標(biāo)方程為ρ=2
          2
          sin(θ-
          π
          4
          )
          ,以極點(diǎn)為原點(diǎn),極軸為x軸的正半軸建立平面直角坐標(biāo)系,直線l的參數(shù)方程為
          x=1+
          4
          5
          t
          y=-1-
          3
          5
          t
          (t為參數(shù)),求直線l被曲線C所截得的弦長(zhǎng).
          分析:先把極坐標(biāo)方程和參數(shù)方程化為普通方程,求出圓心到直線的距離,利用弦長(zhǎng)公式求弦長(zhǎng).
          解答:解:將方程ρ=2
          2
          sin(θ-
          π
          4
          )
          ,
          x=1+
          4
          5
          t
          y=-1-
          3
          5
          t
          ,
          分別化為普通方程:x2+y2+2x-2y=0,3x+4y+1=0,
          由曲線C的圓心為C(-1,1),半徑為
          2
          .  
          所以,圓心C到直線l的距離為
          |-3+4+1|
          9+16
          =
          2
          5

          故所求弦長(zhǎng)為 2
          2-(
          2
          5
          )
          2
          =
          2
          46
          5
          點(diǎn)評(píng):本題考查把極坐標(biāo)方程和參數(shù)方程化為普通方程的方法,點(diǎn)到直線的距離公式及弦長(zhǎng)公式的應(yīng)用.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          在A、B、C、D四小題中只能選做2題,每小題10分,共計(jì)20分,請(qǐng)?jiān)诖痤}紙指定區(qū)域內(nèi)作答,解答應(yīng)寫出文字說明、證明過程或演算步驟.
          A.選修4-1:(幾何證明選講)
          如圖,從O外一點(diǎn)P作圓O的兩條切線,切點(diǎn)分別為A,B,
          AB與OP交于點(diǎn)M,設(shè)CD為過點(diǎn)M且不過圓心O的一條弦,
          求證:O,C,P,D四點(diǎn)共圓.
          B.選修4-2:(矩陣與變換)
          已知二階矩陣M有特征值λ=3及對(duì)應(yīng)的一個(gè)特征向量e1=[
           
          1
          1
          ],并且矩陣M對(duì)應(yīng)的變換將點(diǎn)(-1,2)變換成(9,15),求矩陣M.
          C.選修4-4:(坐標(biāo)系與參數(shù)方程)
          在極坐標(biāo)系中,曲線C的極坐標(biāo)方程為p=2
          2
          sin(θ-
          π
          4
          ),以極點(diǎn)為原點(diǎn),極軸為x軸的正半軸建立平面直角坐標(biāo)系,直線l的參數(shù)方程為
          x=1+
          4
          5
          t
          y=-1-
          3
          5
          t
          (t為參數(shù)),求直線l被曲線C所截得的弦長(zhǎng).
          D.選修4-5(不等式選講)
          已知實(shí)數(shù)x,y,z滿足x+y+z=2,求2x2+3y2+z2的最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (坐標(biāo)系與參數(shù)方程選做題)在極坐標(biāo)系中,曲線C的極坐標(biāo)方程為ρsin(θ-
          π
          6
          )=3,點(diǎn)A(2,
          π
          3
          )到曲線C上點(diǎn)的距離的最小值A(chǔ)P0=
          2
          2

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          選修4-4:坐標(biāo)系與參數(shù)方程
          在極坐標(biāo)系中,曲線C極坐標(biāo)方程為ρ=2
          2
          sin(θ-
          π
          4
          )
          ,以極點(diǎn)為原點(diǎn),極軸為x軸的正半軸建立平面直角坐標(biāo)系,直線l的參數(shù)方程為
          x=1+
          4
          5
          t
          y=-1-
          3
          5
          t
          (t為參數(shù)).
          求:(1)曲線C和直線l的普通方程;
          (2)求直線l被曲線C所截得的弦長(zhǎng).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          在平面直角坐標(biāo)系中,已知直線l過點(diǎn)A(2,0),傾斜角為
          π2

          (1)寫出直線l的參數(shù)方程;
          (2)若有一極坐標(biāo)系分別以直角坐標(biāo)系的原點(diǎn)和x軸非負(fù)半軸為原點(diǎn)和極軸,并且兩坐標(biāo)系的單位長(zhǎng)度相等,在極坐標(biāo)系中有曲線C:ρ2cos2θ=1,求直線l截曲線C所得的弦BC的長(zhǎng)度.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案