日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 設(shè)Sn為數(shù)列{an}的前n項(xiàng)之和.若不等式對任何等差數(shù)列{an}及任何正整數(shù)n恒成立,則λ的最大值為   
          【答案】分析:由題意可知5×an2+2×a1•an+a12≥4λa12,兩邊除以a12,設(shè) x=,有.由此可知答案.
          解答:解:∵
          可以轉(zhuǎn)化為5×an2+2×a1•an+a12≥4λa12
          兩邊除以a12,設(shè) x=,有,∴
          ∴當(dāng) x=-時,λ 有最大值
          點(diǎn)評:本題考查數(shù)列的性質(zhì)和應(yīng)用,解題時要認(rèn)真審題,注意挖掘隱含條件.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          設(shè)Sn為數(shù)列{an}的前n項(xiàng)和,Sn=(-1)nan-
          1
          2n
          ,n∈N+,則a2+a4+a6+…+a100=
          1
          3
          (1-
          1
          2100
          )
          1
          3
          (1-
          1
          2100
          )

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          設(shè)Sn為數(shù)列{an}的前n項(xiàng)和,Sn=λan-1(λ為常數(shù),n=1,2,3,…).
          (I)若a3=a22,求λ的值;
          (II)是否存在實(shí)數(shù)λ,使得數(shù)列{an}是等差數(shù)列?若存在,求出λ的值;若不存在.請說明理由
          (III)當(dāng)λ=2時,若數(shù)列{bn}滿足bn+1=an+bn(n=1,2,3,…),且b1=
          3
          2
          ,令cn=
          an
          (an+1) bn
          ,求數(shù)列{cn}的前n項(xiàng)和Tn

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012•杭州二模)在等差數(shù)列{an},等比數(shù)列{bn}中,a1=b1=1,a2=b2,a4=b3≠b4
          (Ⅰ)設(shè)Sn為數(shù)列{an}的前n項(xiàng)和,求anbn和Sn;
          (Ⅱ)設(shè)Cn=
          anbnSn+1
          (n∈N*),Rn=C1+C2+…+Cn,求Rn

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          設(shè)Sn為數(shù)列{an}的前n項(xiàng)和,Sn=n2+pn,n∈N*,其中p是實(shí)數(shù).
          (1)若數(shù)列{
          Sn
          }
          為等差數(shù)列,求p的值;
          (2)若對于任意的m∈N*,am,a2m,a4m成等比數(shù)列,求p的值;
          (3)在(2)的條件下,令b1=a1,bn=a2n-1,其前n項(xiàng)和為Tn,求Tn關(guān)于n的表達(dá)式.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          設(shè)Sn為數(shù)列{an}的前N項(xiàng)和,且有S1=a,Sn+Sn-1=3n2,n=2,3,4,…
          (Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
          (Ⅱ)若數(shù)列{an}是單調(diào)遞增數(shù)列,求a的取值范圍.

          查看答案和解析>>

          同步練習(xí)冊答案