日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知函數(shù)f(x)=ex-x-1(x>0),g(x)=·ex(x>0).

          (1)求證:當(dāng)a≥1時(shí)對(duì)于任意正實(shí)數(shù)x,f(x)的圖象總不會(huì)在g(x)的圖象的上方;

          (2)對(duì)于在(0,1)上的任意a值,問(wèn)是否存在正實(shí)數(shù)x使得f(x)>g(x)成立?如果存在,求出符合條件的x的一個(gè)取值;否則,請(qǐng)說(shuō)明理由.

          (1)證明:在x>0時(shí),要證f(x)的圖象總不會(huì)在g(x)的圖象的上方,

          即證f(x)≤g(x)成立;要證ex-x-1≤·ex成立;只需證ex·ex+x+1,即需證1≤+.①

          令y(x)=+,∴y′(x)=ax+=ax+.

          ∴y′(x)=x(a).

          又∵a≥1,x>0,故y′(x)≥0.

          ∴y(x)是增函數(shù),故y(x)≥y(0)=1,從而①式成立.

          ∴f(x)≤g(x)成立;

          所以當(dāng)a≥1時(shí)對(duì)于任意正實(shí)數(shù)x,f(x)的圖象總不會(huì)在g(x)的圖象的上方.

          (2)解:將f(x)>g(x)(x>0),即ex-x-1>·ex,

          變形為+-1<0.②

          要找一個(gè)x>0,使得②式成立,只需找到函數(shù)t(x)=+-1的最小值,滿足t(x)min<0即可,對(duì)于t(x)求導(dǎo)數(shù)t′(x)=x(a).

          令t′(x)=0得ex=,則x=-lna.在0<x<-lna時(shí),t′(x)<0;

          在x>-lna時(shí),t′(x)>0;t(x)在x=-lna時(shí),取最小值.t(-lna)=(lna)2+a(-lna+1)-1,

          下面只需證明(lna)2+a(-lna+1)-1<0在0<a<1時(shí)恒成立即可.

          又令p(a)=(lna)2+a(-lna+1)-1,對(duì)p(a)關(guān)于a求導(dǎo)數(shù),則p′(a)=(lna)2≥0,

          從而p(a)為增函數(shù),則p(a)<p(1)=0,從而(lna)2+a(-lna+1)-1<0(0<a<1),

          于是t(x)的最小值t(-lna)<0,因此可以找到一個(gè)常數(shù)x=-lna(0<a<1)使得②式成立.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知函數(shù)f(x)=
          e-x-2,(x≤0)
          2ax-1,(x>0)
          (a是常數(shù)且a>0).對(duì)于下列命題:
          ①函數(shù)f(x)的最小值是-1;
          ②函數(shù)f(x)在R上是單調(diào)函數(shù);
          ③若f(x)>0在[
          1
          2
          ,+∞)
          上恒成立,則a的取值范圍是a>1;
          ④對(duì)任意x1<0,x2<0且x1≠x2,恒有f(
          x1+x2
          2
          )<
          f(x1)+f(x2)
          2

          其中正確命題的序號(hào)是
           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知函數(shù)f(x)=e-z+log3
          1
          x
          ,若實(shí)數(shù)x0是方程f(x)=0的解,且x1>x0,則f(x1)的值( 。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (2012•海淀區(qū)一模)已知函數(shù)f(x)=e-kx(x2+x-
          1k
          )(k<0)

          (Ⅰ)求f(x)的單調(diào)區(qū)間;
          (Ⅱ)是否存在實(shí)數(shù)k,使得函數(shù)f(x)的極大值等于3e-2?若存在,求出k的值;若不存在,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (2012•河南模擬)已知函數(shù)f(x)=e-kx(x2+x-
          1k
          )(k<0)

          (Ⅰ)求f(x)的單調(diào)區(qū)間;
          (Ⅱ)是否存在實(shí)數(shù)k,使得函數(shù)f(x)的極大值等于3e-2?若存在,求出k的值;若不存在,請(qǐng)說(shuō)明理由.
          請(qǐng)考生在第(22)、(23)、(24)三題中任選一題作答,如果多做,則按所做的第一題記分.作答時(shí)用2B鉛筆在答題卡上把所選題目對(duì)應(yīng)的題號(hào)涂黑.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (2010•孝感模擬)已知函數(shù)
          f(x)=
          e-x-1,(x≤0)
          |lnx|,(x>0)
          ,集合M={x|f[f(x)]=1},則M中元素的個(gè)數(shù)為( 。

          查看答案和解析>>

          同步練習(xí)冊(cè)答案