【題目】(原創(chuàng),較難)橢圓的左右焦點(diǎn)分別為
,與y軸正半軸交于點(diǎn)B,若
為等腰直角三角形,且直
線被圓
所截得的弦長為2.
(1)求橢圓的方程;(2)直線l與橢圓交于點(diǎn)A、C,線段AC的中點(diǎn)為M,射線MO與橢圓交于點(diǎn)P,點(diǎn)O為重心,探求
面積
是否為定值,若是求出這個值,若不是求
的取值范圍
【答案】(1) .
(2) 面積
為定值
.
【解析】
分析:(1)由為等腰直角三角形可得
,由直線
:
被圓
所截得的弦長為2,可得
,
,從而可得橢圓的方程;(2)設(shè)直線
的方程為
,設(shè)
,
,聯(lián)立
,利用韋達(dá)定理、結(jié)合重心坐標(biāo)公式求出
點(diǎn)坐標(biāo),代入橢圓方程可得
,利用弦長公式、點(diǎn)到直線距離公式以及三角形面積公式可得
的面積為
,化簡可得結(jié)果.
詳解:(1)由為等腰直角三角形可得
,直線
:
被圓
所截得的弦長為2,所以
,
,所以橢圓的方程為
.
(2)若直線的斜率不存在,則
.
若直線的斜率存在,設(shè)直線
的方程為
,設(shè)
,
,
即則
,
,
,
由題意點(diǎn)為
重心,設(shè)
,則
,
,
所以,
,代入橢圓
,得
,整理得
,
設(shè)坐標(biāo)原點(diǎn)到直線
的距離為
,則
的面積
.
綜上可得的面積
為定值
.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于曲線C:,給出下列五個命題:
①曲線C關(guān)于直線y=x對稱;
②曲線C關(guān)于點(diǎn)對稱;
③曲線C上的點(diǎn)到原點(diǎn)距離的最小值為;
④當(dāng)時,曲線C上所有點(diǎn)處的切線斜率為負(fù)數(shù);
⑤曲線C與兩坐標(biāo)軸所圍成圖形的面積是.
上述命題中,為真命題的是_____.(將所有真命題的編號填在橫線上)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的導(dǎo)函數(shù)為
,且對任意的實數(shù)
都有
(
是自然對數(shù)的底數(shù)),且
,若關(guān)于
的不等式
的解集中恰有兩個整數(shù),則實數(shù)
的取值范圍是
A. B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了了解四川省各景點(diǎn)在大眾中的熟知度,隨機(jī)對歲的人群抽樣了
人,回答問題“四川省有哪幾個著名的旅游景點(diǎn)?”統(tǒng)計結(jié)果如表.
組號 | 分組 | 回答正確的人數(shù) | 回答正確的人數(shù) 占本組的頻率 |
第 | | | |
第 | | | |
第 | | | |
第 | | | |
第 | | |
(1)分別求出的值;
(2)從第,
,
組回答正確的人中用分層抽樣的方法抽取
人,求第
,
,
組每組各抽取多少人?
(3)通過直方圖求出年齡的眾數(shù),平均數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,
,
,
,
,
為
上的動點(diǎn).
(Ⅰ)當(dāng)為
的中點(diǎn)時,在棱
上是否存在點(diǎn)
,使得
?說明理由;
(Ⅱ)的面積最小時,求三棱錐
的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,圓
的參數(shù)方程為
(
為參數(shù)),圓
與圓
外切于原點(diǎn)
,且兩圓圓心的距離
,以坐標(biāo)原點(diǎn)為極點(diǎn),
軸正半軸為極軸建立極坐標(biāo)系.
(1)求圓和圓
的極坐標(biāo)方程;
(2)過點(diǎn)的直線
與圓
異于點(diǎn)
的交點(diǎn)分別為點(diǎn)
,與圓
異于點(diǎn)
的交點(diǎn)分別為點(diǎn)
,且
,求四邊形
面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,曲邊三角形中,線段是直線
的一部分,曲線段
是拋物線
的一部分.矩形
的頂點(diǎn)分別在線段
,曲線段
和
軸上.設(shè)點(diǎn)
,記矩形
的面積為
.
(Ⅰ)求函數(shù)的解析式并指明定義域;
(Ⅱ)求函數(shù)的最大值.
【答案】(Ⅰ) 定義域為;(Ⅱ) 在
時,
取得最大值
.
【解析】試題分析:( I )根據(jù)點(diǎn)在直線
上,
在拋物線
上,結(jié)合圖形,可得點(diǎn)
,從而可得函數(shù)
的解析式,聯(lián)立直線與拋物線的方程,即可求得定義域;(II)對函數(shù)
求導(dǎo),利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,從而可求得函數(shù)
的最大值.
試題解析:( I )令,
解得
(舍)
因為點(diǎn)
所以
,
其定義域為
(II)因為
令,得
,
(舍)
所以的變化情況如下表
0 | |||
極大 |
因為是函數(shù)
在
上的唯一的一個極大值,
所以在時,函數(shù)
取得最大值
.
點(diǎn)睛:利用導(dǎo)數(shù)解答函數(shù)最值的一般步驟:第一步:利用或
求單調(diào)區(qū)間;第二步:解
得兩個根
;第三步:比較兩根同區(qū)間端點(diǎn)的大;第四步:求極值;第五步:比較極值同端點(diǎn)值的大。
【題型】解答題
【結(jié)束】
16
【題目】在各項均為正數(shù)的數(shù)列中,
且
.
(Ⅰ)當(dāng)時,求
的值;
(Ⅱ)求證:當(dāng)時,
.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com