日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知函數(shù)數(shù)學(xué)公式,其中a≠0.
          (1)當(dāng)a,b滿(mǎn)足什么條件時(shí),f(x)取得極值?
          (2)已知a>0,且f(x)在區(qū)間(0,1]上單調(diào)遞增,試用a表示出b的取值范圍.

          解:(1)由已知得f′(x)=ax2+2bx+1,
          令f′(x)=0,得ax2+2bx+1=0,
          f(x)要取得極值,方程ax2+2bx+1=0,必須有解,
          所以△=4b2-4a>0,即b2>a,
          此時(shí)方程ax2+2bx+1=0的根為
          x1==,x2==,,
          所以f′(x)=a(x-x1)(x-x2
          當(dāng)a>0時(shí),

          所以f(x)在x1,x2處分別取得極大值和極小值.
          當(dāng)a<0時(shí),

          所以f(x)在x1,x2處分別取得極大值和極小值.
          綜上,當(dāng)a,b滿(mǎn)足b2>a時(shí),f(x)取得極值.
          (2)要使f(x)在區(qū)間(0,1]上單調(diào)遞增,需使f′(x)=ax2+2bx+1≥0在(0,1]上恒成立.
          即b≥--,x∈(0,1]恒成立,
          所以b≥-
          設(shè)g(x)=--,g′(x)=-+=
          令g′(x)=0得x=或x=-(舍去),
          當(dāng)a>1時(shí),0<<1,當(dāng)x∈(0,]時(shí)g′(x)>0,g(x)=--單調(diào)增函數(shù);
          當(dāng)x∈(,1]時(shí)g′(x)<0,g(x)=--單調(diào)減函數(shù),
          所以當(dāng)x=時(shí),g(x)取得最大,最大值為g()=-
          所以b≥-
          當(dāng)0<a≤1時(shí),≥1,
          此時(shí)g′(x)≥0在區(qū)間(0,1]恒成立,
          所以g(x)=--在區(qū)間(0,1]上單調(diào)遞增,當(dāng)x=1時(shí)g(x)最大,最大值為g(1)=-,
          所以b≥-
          綜上,當(dāng)a>1時(shí),b≥-;
          0<a≤1時(shí),b≥-;
          分析:(1)對(duì)函數(shù)求導(dǎo),由題意可得f′(x)=0有解,由a≠0,分a>0,a<0討論可求解
          (2)f(x)在區(qū)間(0,1]上單調(diào)遞增,可得f′(x)≥0在[0,1]上恒成立,從而轉(zhuǎn)化為求函數(shù)的最值,可求解.
          點(diǎn)評(píng):本題考查了函數(shù)極值取得的條件,函數(shù)的單調(diào)區(qū)間問(wèn)題:由f′(x)>0,解得函數(shù)的單調(diào)增區(qū)間;反之函數(shù)在[a,b]上單調(diào)遞增,則f′(x)≥0恒成立,進(jìn)而轉(zhuǎn)化為求函數(shù)在區(qū)間[a,b]上的最值問(wèn)題,體現(xiàn)了分類(lèi)討論及轉(zhuǎn)化思想在解題中的應(yīng)用.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源:2010年浙江省溫州市蒼南縣龍港高中高考數(shù)學(xué)仿真模擬試卷(文科)(解析版) 題型:解答題

          已知函數(shù),其中a≠0
          (1)若a=1,且f(x)的導(dǎo)函數(shù)的圖象關(guān)于直線x=2對(duì)稱(chēng)時(shí).試求f(x)在區(qū)間[0,2]上的最小值.
          (2)若a>0,且f(x)在區(qū)間(0,1]上單調(diào)遞增,試用a表示出b的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:2010年浙江省壽昌中學(xué)、新安江中學(xué)、嚴(yán)州中學(xué)高三第二次聯(lián)考數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

          已知函數(shù),其中a≠0
          (1)若a=1,且f(x)的導(dǎo)函數(shù)的圖象關(guān)于直線x=2對(duì)稱(chēng)時(shí).試求f(x)在區(qū)間[0,2]上的最小值.
          (2)若a>0,且f(x)在區(qū)間(0,1]上單調(diào)遞增,試用a表示出b的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年江西省5月第一次周考理科數(shù)學(xué)試卷(解析版) 題型:解答題

          已知函數(shù)=,其中a≠0.

          (1)若對(duì)一切x∈R,≥1恒成立,求a的取值集合.

          (2)在函數(shù)的圖像上取定兩點(diǎn),記直線AB的斜率為K,問(wèn):是否存在x0∈(x1,x2),使成立?若存在,求的取值范圍;若不存在,請(qǐng)說(shuō)明理由.

           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:2012年全國(guó)普通高等學(xué)校招生統(tǒng)一考試?yán)砜茢?shù)學(xué)(湖南卷解析版) 題型:解答題

          已知函數(shù)=,其中a≠0

          (1)   若對(duì)一切x∈R,≥1恒成立,求a的取值集合.

          (2)在函數(shù)的圖像上取定兩點(diǎn),記直線AB的斜率為K,問(wèn):是否存在x0∈(x1,x2),使成立?若存在,求的取值范圍;若不存在,請(qǐng)說(shuō)明理由.

           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:高考真題 題型:解答題

          已知函數(shù),其中a≠0。
          (1)若對(duì)一切x ∈R ,≥1恒成立,求a的取值集合。
          (2)在函數(shù)的圖像上取定兩點(diǎn),記直線AB的斜率為K,問(wèn):是否存在x0∈(x1,x2),使成立?若存在,求的取值范圍;若不存在,請(qǐng)說(shuō)明理由。

          查看答案和解析>>

          同步練習(xí)冊(cè)答案