【題目】設(shè)橢圓的右焦點(diǎn)為
,過(guò)點(diǎn)
作與
軸垂直的直線
交橢圓于
,
兩點(diǎn)(點(diǎn)
在第一象限),過(guò)橢圓的左頂點(diǎn)和上頂點(diǎn)的直線
與直線
交于
點(diǎn),且滿(mǎn)足
,設(shè)
為坐標(biāo)原點(diǎn),若
,
,則該橢圓的離心率為( )
A. B.
C.
或
D.
【答案】A
【解析】分析:根據(jù)向量共線定理及,
,可推出
,
的值,再根據(jù)過(guò)點(diǎn)
作與
軸垂直的直線
交橢圓于
,
兩點(diǎn)(點(diǎn)
在第一象限),可推出
,
兩點(diǎn)的坐標(biāo),然后求出過(guò)橢圓的左頂點(diǎn)和上頂點(diǎn)的直線
的方程,即可求得
點(diǎn)的坐標(biāo),從而可得
,
,
三者關(guān)系,進(jìn)而可得橢圓的離心率.
詳解:∵、
、
三點(diǎn)共線,
∴
又∵
∴或
∵
∴
∵過(guò)點(diǎn)作與
軸垂直的直線
交橢圓于
,
兩點(diǎn)(點(diǎn)
在第一象限)
∴,
∵過(guò)橢圓的左頂點(diǎn)和上頂點(diǎn)的直線與直線
交于
點(diǎn)
∴直線的方程為為
∴
∵
∴,即
.
∴,即
.
∴
∵
∴
故選A.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩人在相同的條件下投籃5輪,每輪甲、乙各投籃10次,投籃命中次數(shù)的情況如圖所示(實(shí)線為甲的折線圖,虛線為乙的折線圖),則以下說(shuō)法錯(cuò)誤的是( )
A. 甲投籃命中次數(shù)的眾數(shù)比乙的小
B. 甲投籃命中次數(shù)的平均數(shù)比乙的小
C. 甲投籃命中次數(shù)的中位數(shù)比乙的大
D. 甲投籃命中的成績(jī)比乙的穩(wěn)定
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了調(diào)查某大學(xué)學(xué)生的某天上網(wǎng)的時(shí)間,隨機(jī)對(duì)名男生和
名女生進(jìn)行了不記名的問(wèn)卷調(diào)查.得到了如下的統(tǒng)計(jì)結(jié)果:
表1:男生上網(wǎng)時(shí)間與頻數(shù)分布表
上網(wǎng)時(shí)間(分鐘) | |||||
人數(shù) |
表2:女生上網(wǎng)時(shí)間與頻數(shù)分布表
上網(wǎng)時(shí)間(分鐘) | |||||
人數(shù) |
(1)用分層抽樣在選取
人,再隨機(jī)抽取
人,求抽取的
人都是女生的概率;
(2)完成下面的列聯(lián)表,并回答能否有
的把握認(rèn)為“大學(xué)生上網(wǎng)時(shí)間與性別有關(guān)”?
上網(wǎng)時(shí)間少于 | 上網(wǎng)時(shí)間不少于 | 合計(jì) | |
男生 | |||
女生 | |||
合計(jì) |
附:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓M:與
軸相切.
(1)求的值;
(2)求圓M在軸上截得的弦長(zhǎng);
(3)若點(diǎn)是直線
上的動(dòng)點(diǎn),過(guò)點(diǎn)
作直線
與圓M相切,
為切點(diǎn),求四邊形
面積的最小值.
【答案】(1) (2)
(3)
【解析】試題分析:(1)先將圓的一般方程化成標(biāo)準(zhǔn)方程,利用直線和圓相切進(jìn)行求解;(2) 令,得到關(guān)于
的一元二次方程進(jìn)行求解;(3)將四邊形的面積的最小值問(wèn)題轉(zhuǎn)化為點(diǎn)到直線的的距離進(jìn)行求解.
試題解析:(1) ∵圓M:
與
軸相切
∴ ∴
(2) 令,則
∴
∴
(3)
∵的最小值等于點(diǎn)
到直線
的距離,
∴ ∴
∴四邊形面積的最小值為
.
【題型】解答題
【結(jié)束】
20
【題目】在平面直角坐標(biāo)系中,圓
的方程為
,且圓
與
軸交于
,
兩點(diǎn),設(shè)直線
的方程為
.
(1)當(dāng)直線與圓
相切時(shí),求直線
的方程;
(2)已知直線與圓
相交于
,
兩點(diǎn).
(。┤,求實(shí)數(shù)
的取值范圍;
(ⅱ)直線與直線
相交于點(diǎn)
,直線
,直線
,直線
的斜率分別為
,
,
,
是否存在常數(shù),使得
恒成立?若存在,求出
的值;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)的圖像過(guò)點(diǎn)
,且在
處取得極值.
(1)若對(duì)任意有
恒成立,求實(shí)數(shù)
的取值范圍;
(2)當(dāng),試討論函數(shù)
的零點(diǎn)個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù)的圖象為
,則以下結(jié)論中正確的是__________.(寫(xiě)出所有正確結(jié)論的編號(hào))
①圖象關(guān)于直線
對(duì)稱(chēng);
②圖象關(guān)于點(diǎn)
對(duì)稱(chēng);
③函數(shù)在區(qū)間
內(nèi)是增函數(shù);
④由的圖象向右平移
個(gè)單位長(zhǎng)度可以得到圖象
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的左右焦點(diǎn)分別為F1,F2,離心率為
,設(shè)過(guò)點(diǎn)F2的直線l被橢圓C截得的線段為MN,當(dāng)l⊥x軸時(shí),|MN|=3.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)在x軸上是否存在一點(diǎn)P,使得當(dāng)l變化時(shí),總有PM與PN所在的直線關(guān)于x軸對(duì)稱(chēng)?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】是衡量空氣污染程度的一個(gè)指標(biāo),為了了解
市空氣質(zhì)量情況,從
年每天的
值的數(shù)據(jù)中隨機(jī)抽取
天的數(shù)據(jù),其頻率分布直方圖如圖所示.將
值劃分成區(qū)間
、
、
、
,分別稱(chēng)為一級(jí)、二級(jí)、三級(jí)和四級(jí),統(tǒng)計(jì)時(shí)用頻率估計(jì)概率 .
(1)根據(jù)年的數(shù)據(jù)估計(jì)該市在
年中空氣質(zhì)量為一級(jí)的天數(shù);
(2)按照分層抽樣的方法,從樣本二級(jí)、三級(jí)、四級(jí)中抽取天的
數(shù)據(jù),再?gòu)倪@
個(gè)數(shù)據(jù)中隨機(jī)抽取
個(gè),求僅有二級(jí)天氣的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】市某機(jī)構(gòu)為了調(diào)查該市市民對(duì)我國(guó)申辦
年足球世界杯的態(tài)度,隨機(jī)選取了
位市民進(jìn)行調(diào)查,調(diào)查結(jié)果統(tǒng)計(jì)如下:
支持 | 不支持 | 合計(jì) | |
男性市民 | |||
女性市民 | |||
合計(jì) |
(1)根據(jù)已知數(shù)據(jù),把表格數(shù)據(jù)填寫(xiě)完整;
(2)利用(1)完成的表格數(shù)據(jù)回答下列問(wèn)題:
(i)能否在犯錯(cuò)誤的概率不超過(guò)的前提下認(rèn)為支持申辦足球世界杯與性別有關(guān);
(ii)已知在被調(diào)查的支持申辦足球世界杯的男性市民中有位退休老人,其中
位是教師,現(xiàn)從這
位退休老人中隨機(jī)抽取
人,求至多有
位老師的概率.
附:,其中
.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com