)如圖,橢圓:
,
、
、
、
為橢圓
的頂點(diǎn)
(Ⅰ)若橢圓上的點(diǎn)
到焦點(diǎn)距離的最大值為
,最小值為
,求橢圓方程;
(Ⅱ)已知:直線相交于
,
兩點(diǎn)(
不是橢圓的左右頂點(diǎn)),并滿足
試研究:直線
是否過定點(diǎn)? 若過定點(diǎn),請(qǐng)求出定點(diǎn)坐標(biāo),若不過定點(diǎn),請(qǐng)說明理由
(Ⅰ) (Ⅱ)直線
過定點(diǎn),定點(diǎn)坐標(biāo)為
解析試題分析:(Ⅰ)由已知得:,
解這個(gè)方程組求出a、c即得橢圓的標(biāo)準(zhǔn)方程
(Ⅱ)將直線方程與橢圓的方程聯(lián)立,
將直線方程代入橢圓方程得:
用韋達(dá)定理找到點(diǎn),
的坐標(biāo)與k、m的關(guān)系
再由可得A、B的坐標(biāo)間的一個(gè)關(guān)系式,由此消去
得m、k之間的關(guān)系式,用此關(guān)系式將直線
的方程中的參數(shù)m或k換掉一個(gè),由此即可看出直線是否恒過一個(gè)定點(diǎn)
試題解析:(Ⅰ)由已知與(Ⅰ)得:,
,
,
,
橢圓的標(biāo)準(zhǔn)方程為
4分
(Ⅱ)設(shè),
,
聯(lián)立
得,
又,
因?yàn)闄E圓的右頂點(diǎn)為,
,即
,
,
,
解得:,
,且均滿足
,
當(dāng)時(shí),
的方程為
,直線過定點(diǎn)
,與已知矛盾;
當(dāng)時(shí),
的方程為
,直線過定點(diǎn)
所以,直線過定點(diǎn),定點(diǎn)坐標(biāo)為
考點(diǎn):1、橢圓的方程;2、直線與圓錐曲線的位置關(guān)系
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓C:的兩個(gè)焦點(diǎn)是F1(
c,0),F(xiàn)2(c,0)(c>0)。
(I)若直線與橢圓C有公共點(diǎn),求
的取值范圍;
(II)設(shè)E是(I)中直線與橢圓的一個(gè)公共點(diǎn),求|EF1|+|EF2|取得最小值時(shí),橢圓的方程;
(III)已知斜率為k(k≠0)的直線l與(II)中橢圓交于不同的兩點(diǎn)A,B,點(diǎn)Q滿足 且
,其中N為橢圓的下頂點(diǎn),求直線l在y軸上截距的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓C的中心在坐標(biāo)原點(diǎn),短軸長(zhǎng)為4,且有一個(gè)焦點(diǎn)與拋物線的焦點(diǎn)重合.
(Ⅰ)求橢圓C的方程;
(Ⅱ)已知經(jīng)過定點(diǎn)M(2,0)且斜率不為0的直線交橢圓C于A、B兩點(diǎn),試問在x軸上是否另存在一個(gè)定點(diǎn)P使得
始終平分
?若存在,求出
點(diǎn)坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖所示,已知圓為圓上一動(dòng)點(diǎn),點(diǎn)
是線段
的垂直平分線與直線
的交點(diǎn).
(1)求點(diǎn)的軌跡曲線
的方程;
(2)設(shè)點(diǎn)是曲線
上任意一點(diǎn),寫出曲線
在點(diǎn)
處的切線
的方程;(不要求證明)
(3)直線過切點(diǎn)
與直線
垂直,點(diǎn)
關(guān)于直線
的對(duì)稱點(diǎn)為
,證明:直線
恒過一定點(diǎn),并求定點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知、
分別是橢圓
的左、右焦點(diǎn),右焦點(diǎn)
到上頂點(diǎn)的距離為2,若
(Ⅰ)求此橢圓的方程;
(Ⅱ)直線與橢圓
交于
兩點(diǎn),若弦
的中點(diǎn)為
,求直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知拋物線上有一點(diǎn)
,到焦點(diǎn)
的距離為
.
(Ⅰ)求及
的值.
(Ⅱ)如圖,設(shè)直線與拋物線交于兩點(diǎn)
,且
,過弦
的中點(diǎn)
作垂直于
軸的直線與拋物線交于點(diǎn)
,連接
.試判斷
的面積是否為定值?若是,求出定值;否則,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在
軸上,橢圓
上的點(diǎn)到焦點(diǎn)距離的最大值為
,最小值為
.
(Ⅰ)求橢圓方程;
(Ⅱ)若直線與橢圓交于不同的兩點(diǎn)
、
,且線段
的垂直平分線過定點(diǎn)
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)橢圓C:過點(diǎn)(0,4),離心率為
(Ⅰ)求C的方程;(Ⅱ)求過點(diǎn)(3,0)且斜率為的直線被C所截線段的長(zhǎng)度.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在直角坐標(biāo)系上取兩個(gè)定點(diǎn)
,再取兩個(gè)動(dòng)點(diǎn)
且
.
(I)求直線與
交點(diǎn)的軌跡
的方程;
(II)已知,設(shè)直線:
與(I)中的軌跡
交于
、
兩點(diǎn),直線
、
的傾斜角分別為
且
,求證:直線過定點(diǎn),并求該定點(diǎn)的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com