日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. )如圖,橢圓,、、為橢圓的頂點(diǎn)

          (Ⅰ)若橢圓上的點(diǎn)到焦點(diǎn)距離的最大值為,最小值為,求橢圓方程;
          (Ⅱ)已知:直線相交于兩點(diǎn)(不是橢圓的左右頂點(diǎn)),并滿足 試研究:直線是否過定點(diǎn)? 若過定點(diǎn),請(qǐng)求出定點(diǎn)坐標(biāo),若不過定點(diǎn),請(qǐng)說明理由

          (Ⅰ) (Ⅱ)直線過定點(diǎn),定點(diǎn)坐標(biāo)為 

          解析試題分析:(Ⅰ)由已知得:,解這個(gè)方程組求出a、c即得橢圓的標(biāo)準(zhǔn)方程
          (Ⅱ)將直線方程與橢圓的方程聯(lián)立,
          將直線方程代入橢圓方程得:
          用韋達(dá)定理找到點(diǎn),的坐標(biāo)與k、m的關(guān)系
          再由可得A、B的坐標(biāo)間的一個(gè)關(guān)系式,由此消去得m、k之間的關(guān)系式,用此關(guān)系式將直線的方程中的參數(shù)m或k換掉一個(gè),由此即可看出直線是否恒過一個(gè)定點(diǎn)  
          試題解析:(Ⅰ)由已知與(Ⅰ)得:,,
          , 
          橢圓的標(biāo)準(zhǔn)方程為    4分
          (Ⅱ)設(shè),,
          聯(lián)立


          ,
          因?yàn)闄E圓的右頂點(diǎn)為,
          ,即,
          ,
          ,
           
          解得:
          ,且均滿足,
          當(dāng)時(shí),的方程為,直線過定點(diǎn),與已知矛盾;
          當(dāng)時(shí),的方程為,直線過定點(diǎn) 
          所以,直線過定點(diǎn),定點(diǎn)坐標(biāo)為 
          考點(diǎn):1、橢圓的方程;2、直線與圓錐曲線的位置關(guān)系

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知橢圓C:的兩個(gè)焦點(diǎn)是F1(c,0),F(xiàn)2(c,0)(c>0)。
          (I)若直線與橢圓C有公共點(diǎn),求的取值范圍;
          (II)設(shè)E是(I)中直線與橢圓的一個(gè)公共點(diǎn),求|EF1|+|EF2|取得最小值時(shí),橢圓的方程;
          (III)已知斜率為k(k≠0)的直線l與(II)中橢圓交于不同的兩點(diǎn)A,B,點(diǎn)Q滿足   ,其中N為橢圓的下頂點(diǎn),求直線l在y軸上截距的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知橢圓C的中心在坐標(biāo)原點(diǎn),短軸長(zhǎng)為4,且有一個(gè)焦點(diǎn)與拋物線的焦點(diǎn)重合.
          (Ⅰ)求橢圓C的方程;
          (Ⅱ)已知經(jīng)過定點(diǎn)M(2,0)且斜率不為0的直線交橢圓C于A、B兩點(diǎn),試問在x軸上是否另存在一個(gè)定點(diǎn)P使得始終平分?若存在,求出點(diǎn)坐標(biāo);若不存在,請(qǐng)說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          如圖所示,已知圓為圓上一動(dòng)點(diǎn),點(diǎn)是線段的垂直平分線與直線的交點(diǎn).

          (1)求點(diǎn)的軌跡曲線的方程;
          (2)設(shè)點(diǎn)是曲線上任意一點(diǎn),寫出曲線在點(diǎn)處的切線的方程;(不要求證明)
          (3)直線過切點(diǎn)與直線垂直,點(diǎn)關(guān)于直線的對(duì)稱點(diǎn)為,證明:直線恒過一定點(diǎn),并求定點(diǎn)的坐標(biāo).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知分別是橢圓的左、右焦點(diǎn),右焦點(diǎn)到上頂點(diǎn)的距離為2,若
          (Ⅰ)求此橢圓的方程;
          (Ⅱ)直線與橢圓交于兩點(diǎn),若弦的中點(diǎn)為,求直線的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知拋物線上有一點(diǎn),到焦點(diǎn)的距離為.
          (Ⅰ)求的值.
          (Ⅱ)如圖,設(shè)直線與拋物線交于兩點(diǎn),且,過弦的中點(diǎn)作垂直于軸的直線與拋物線交于點(diǎn),連接.試判斷的面積是否為定值?若是,求出定值;否則,請(qǐng)說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知橢圓的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在軸上,橢圓上的點(diǎn)到焦點(diǎn)距離的最大值為,最小值為
          (Ⅰ)求橢圓方程;
          (Ⅱ)若直線與橢圓交于不同的兩點(diǎn)、,且線段的垂直平分線過定點(diǎn),求的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          設(shè)橢圓C:過點(diǎn)(0,4),離心率為
          (Ⅰ)求C的方程;(Ⅱ)求過點(diǎn)(3,0)且斜率為的直線被C所截線段的長(zhǎng)度.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          在直角坐標(biāo)系上取兩個(gè)定點(diǎn),再取兩個(gè)動(dòng)點(diǎn)
          (I)求直線交點(diǎn)的軌跡的方程;
          (II)已知,設(shè)直線:與(I)中的軌跡交于、兩點(diǎn),直線、 的傾斜角分別為,求證:直線過定點(diǎn),并求該定點(diǎn)的坐標(biāo).

          查看答案和解析>>

          同步練習(xí)冊(cè)答案