日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知橢圓為參數(shù)), 上的動(dòng)點(diǎn),且滿足為坐標(biāo)原點(diǎn)),以原點(diǎn)為極點(diǎn), 軸的正半軸為極軸建立坐標(biāo)系,點(diǎn)的極坐標(biāo)為.

          (1)求線段的中點(diǎn)的軌跡的普通方程;

          (2)利用橢圓的極坐標(biāo)方程證明為定值,并求面積的最大值.

          【答案】(1)(2)最大值.

          【解析】試題分析:(1)將的極坐標(biāo)轉(zhuǎn)化為平面直角坐標(biāo),由橢圓的參數(shù)方程,可設(shè)點(diǎn)的坐標(biāo),利用中點(diǎn)坐標(biāo)得出點(diǎn)坐標(biāo),消去參數(shù)可得軌跡的普通方程;(2)將橢圓的普通方程化為極坐標(biāo)方程,可設(shè)兩點(diǎn)的極坐標(biāo),由題中所給,可得結(jié)論.

          試題解析:(1)點(diǎn)的直角坐標(biāo)為,由題意可設(shè)點(diǎn)的坐標(biāo)為參數(shù),

          則線段的中點(diǎn)的坐標(biāo)為,

          所以點(diǎn)的軌跡的參數(shù)方程為為參數(shù))

          消去可得的普通方程為.

          (2)橢圓的普通方程為,化為極坐標(biāo)方程得,

          變形得,

          ,不妨設(shè),所以

          (定值),

          易知當(dāng)時(shí), 取得最大值.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】將函數(shù)f(x)=sin2x的圖象向右平移φ(0<φ< )個(gè)單位后得到函數(shù)g(x)的圖象.若對滿足|f(x1)﹣g(x2)|=2的x1、x2 , 有|x1﹣x2|min= ,則φ=(
          A.
          B.
          C.
          D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】目前我國城市的空氣污染越來越嚴(yán)重,空氣質(zhì)量指數(shù)一直居高不下,對人體的呼吸系統(tǒng)造成了嚴(yán)重的影響,現(xiàn)調(diào)查了某城市500名居民的工作場所和呼吸系統(tǒng)健康,得到列聯(lián)表如下:

          室外工作

          室內(nèi)工作

          合計(jì)

          有呼吸系統(tǒng)疾病

          150

          無呼吸系統(tǒng)疾病

          100

          合計(jì)

          200

          (Ⅰ)請把列聯(lián)表補(bǔ)充完整;

          (Ⅱ)你是否有95%的把握認(rèn)為感染呼吸系統(tǒng)疾病與工作場所有關(guān);

          (Ⅲ)現(xiàn)采用分層抽樣從室內(nèi)工作的居民中抽取一個(gè)容量為6的樣本,將該樣本看成一個(gè)總體,從中隨機(jī)抽取2人,求2人都有呼吸系統(tǒng)疾病的概率.

          參考公式與臨界表:

          0.100

          0.050

          0.025

          0.010

          0.001

          2.706

          3.841

          5.024

          6.635

          10.828

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知a,b,c分別為△ABC內(nèi)角A,B,C的對邊,且
          (1)求A的值.
          (2)若a=2,△ABC的面積為 ,求b,c的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知二次函數(shù)f(x)=x2﹣16x+q+3
          (1)若函數(shù)在區(qū)間[﹣1,1]上存在零點(diǎn),求實(shí)數(shù)q的取值范圍;
          (2)問:是否存在常數(shù)q(0<q<10),使得當(dāng)x∈[q,10]時(shí),f(x)的最小值為﹣51?若存在,求出q的值,若不存在,說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】關(guān)于x的不等式4x+x﹣a≤ 在x∈[0, ]上恒成立,則實(shí)數(shù)a的取值范圍是(
          A.(﹣∞,﹣ ]
          B.(0,1]
          C.[﹣ ,1]
          D.[1,+∞)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù), .

          (1)證明: ,直線都不是曲線的切線;

          (2)若,使成立,求實(shí)數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】微信紅包是一款可以實(shí)現(xiàn)收發(fā)紅包、查收記錄和提現(xiàn)的手機(jī)應(yīng)用.某網(wǎng)絡(luò)運(yùn)營商對甲、乙兩個(gè)品牌各5種型號(hào)的手機(jī)在相同環(huán)境下?lián)尩降募t包個(gè)數(shù)進(jìn)行統(tǒng)計(jì),得到如下數(shù)據(jù):

          手機(jī)品牌 型號(hào)

          I

          II

          III

          IV

          V

          甲品牌(個(gè))

          4

          3

          8

          6

          12

          乙品牌(乙)

          5

          7

          9

          4

          3

          手機(jī)品牌 紅包個(gè)數(shù)

          優(yōu)

          非優(yōu)

          合計(jì)

          甲品牌(個(gè))

          乙品牌(個(gè))

          合計(jì)

          (1)如果搶到紅包個(gè)數(shù)超過5個(gè)的手機(jī)型號(hào)為“優(yōu)”,否則為“非優(yōu)”,請完成上述2×2列聯(lián)表,據(jù)此判斷是否有85%的把握認(rèn)為搶到的紅包個(gè)數(shù)與手機(jī)品牌有關(guān)?

          (2)如果不考慮其他因素,要從甲品牌的5種型號(hào)中選出3種型號(hào)的手機(jī)進(jìn)行大規(guī)模宣傳銷售.

          ①求在型號(hào)I被選中的條件下,型號(hào)II也被選中的概率;

          ②以表示選中的手機(jī)型號(hào)中搶到的紅包超過5個(gè)的型號(hào)種數(shù),求隨機(jī)變量的分布列及數(shù)學(xué)期望.

          下面臨界值表供參考:

          0.15

          0.10

          0.05

          0.025

          0.010

          0.005

          0.001

          2.072

          2.706

          3.841

          5.024

          6.635

          7.879

          10.828

          參考公式: ,其中.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)f(x)=x3+x2f'(1).
          (1)求f'(1)和函數(shù)x的極值;
          (2)若關(guān)于x的方程f(x)=a有3個(gè)不同實(shí)根,求實(shí)數(shù)a的取值范圍;
          (3)直線l為曲線y=f(x)的切線,且經(jīng)過原點(diǎn),求直線l的方程.

          查看答案和解析>>

          同步練習(xí)冊答案