如圖,在四棱錐中,底面
為直角梯形,且
,
,平面
底面
,
為
的中點(diǎn),
是棱
的中點(diǎn),
.
(Ⅰ)求證:平面
;
(Ⅱ)求三棱錐的體積.
(Ⅰ)詳見解析;(Ⅱ).
解析試題分析:(Ⅰ)本小題是一個(gè)證明線面平行的題,一般借助線面平行的判定定理求解,連接,因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/be/a/1kg1q4.png" style="vertical-align:middle;" />,
,所以四邊形
為平行四邊形,連接
交
于
,連接
,則
,則根據(jù)線面平行的判定定理可知
平面
.
(Ⅱ)由于平面底面
,
,由面面垂直的性質(zhì)定理可知
底面
,
所以是三棱錐
的高,且
,又因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/dd/2/13cmr4.png" style="vertical-align:middle;" />可看成
和
差構(gòu)成,由(Ⅰ)知
是三棱錐
的高,
,
,可知
,又由于
,可知
.
試題解析:連接,因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/be/a/1kg1q4.png" style="vertical-align:middle;" />,
,所以四邊形
為平行四邊形
連接交
于
,連接
,則
,
又平面
,
平面
,所以
平面
.
(2),
由于平面底面
,
底面
所以是三棱錐
的高,且
由(1)知是三棱錐
的高,
,
,
所以,則
.
考點(diǎn):1.直線與平面平行的判定;2.錐體的體積公式.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖甲,⊙O的直徑AB=2,圓上兩點(diǎn)C、D在直徑AB的兩側(cè),且∠CAB=,∠DAB=
.沿直徑AB折起,使兩個(gè)半圓所在的平面互相垂直(如圖乙),F為BC的中點(diǎn),E為AO的中點(diǎn).根據(jù)圖乙解答下列各題:
(1)求三棱錐C-BOD的體積;
(2)求證:CB⊥DE;
(3)在上是否存在一點(diǎn)G,使得FG∥平面ACD?若存在,試確定點(diǎn)G的位置;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在三棱柱ABC-A1B1C1中,CA=CB,AB=AA1,∠BAA1=60°.
(1)證明:AB⊥A1C;
(2)若AB=CB=2,A1C=,求三棱柱ABC-A1B1C1的體積;
(3)若平面ABC⊥平面AA1B1B,AB=CB=2,求直線A1C與平面BB1C1C所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
請您設(shè)計(jì)一個(gè)帳篷,它下部的形狀是高為1m正六棱柱,上部的形狀是側(cè)棱長為3m的正六棱錐(如圖所示)。試問當(dāng)帳篷的頂點(diǎn)O到底面中心O1的距離為多少時(shí),帳篷的體積最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,三角形中,
,
是邊長為
的正方形,平面
⊥底面
,若
、
分別是
、
的中點(diǎn).
(1)求證:∥底面
;
(2)求證:⊥平面
;
(3)求幾何體的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,四棱錐中,底面
是菱形,
,
,
是
的中點(diǎn),點(diǎn)
在側(cè)棱
上.
(1)求證:⊥平面
;
(2)若是
的中點(diǎn),求證:
//平面
;
(3)若,試求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖是一個(gè)直三棱柱被削去一部分后的幾何體的直觀圖與三視圖中的側(cè)視圖、俯視圖.在直觀圖中,是
的中點(diǎn).又已知側(cè)視圖是直角梯形,俯視圖是等腰直角三角形,有關(guān)數(shù)據(jù)如圖所示.
(1)求證:EM∥平面ABC;
(2)試問在棱DC上是否存在點(diǎn)N,使NM⊥平面? 若存在,確定
點(diǎn)N的位置;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com