日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】問題探究

          1)如圖①,在矩形ABCD中,AB=3,BC=4,如果BC邊上存在點(diǎn)P,使APD為等腰三角形,那么請畫出滿足條件的一個(gè)等腰三角形APD,并求出此時(shí)BP的長;

          2)如圖②,在ABC中,∠ABC=60°,BC=12ADBC邊上的高,EF分別為邊AB、AC的中點(diǎn),當(dāng)AD=6時(shí),BC邊上存在一點(diǎn)Q,使∠EQF=90°,求此時(shí)BQ的長;

          問題解決

          3)有一山莊,它的平面圖為如圖③的五邊形ABCDE,山莊保衛(wèi)人員想在線段CD上選一點(diǎn)M安裝監(jiān)控裝置,用來監(jiān)視邊AB,現(xiàn)只要使∠AMB大約為60°,就可以讓監(jiān)控裝置的效果達(dá)到最佳,已知∠A=E=D=90°AB=270m,AE=400m,ED=285m,CD=340m,問在線段CD上是否存在點(diǎn)M,使∠AMB=60°?若存在,請求出符合條件的DM的長,若不存在,請說明理由.

          【答案】124-;;(23+;3)(400-45-30)米.

          【解析】

          1)由于PAD是等腰三角形,底邊不定,需三種情況討論,運(yùn)用三角形全等、矩形的性質(zhì)、勾股定理等知識(shí)即可解決問題.

          2)以EF為直徑作⊙O,易證⊙OBC相切,從而得到符合條件的點(diǎn)Q唯一,然后通過添加輔助線,借助于正方形、特殊角的三角函數(shù)值等知識(shí)即可求出BQ長.

          3)要滿足∠AMB=60°,可構(gòu)造以AB為邊的等邊三角形的外接圓,該圓與線段CD的交點(diǎn)就是滿足條件的點(diǎn),然后借助于等邊三角形的性質(zhì)、特殊角的三角函數(shù)值等知識(shí),就可算出符合條件的DM長.

          1)①作AD的垂直平分線交BC于點(diǎn)P,如圖①,

          PA=PD

          ∴△PAD是等腰三角形.

          ∵四邊形ABCD是矩形,

          AB=DC,∠B=C=90°

          PA=PD,AB=DC

          RtABPRtDCPHL).

          BP=CP

          BC=4,

          BP=CP=2

          ②以點(diǎn)D為圓心,AD為半徑畫弧,交BC于點(diǎn)P′,如圖①,

          DA=DP′

          ∴△P′AD是等腰三角形.

          ∵四邊形ABCD是矩形,

          AD=BCAB=DC,∠C=90°

          AB=3,BC=4,

          DC=3,DP′=4

          CP′==

          BP′=4-

          ③點(diǎn)A為圓心,AD為半徑畫弧,交BC于點(diǎn)P″,如圖①,

          AD=AP″

          ∴△P″AD是等腰三角形.

          同理可得:BP″=

          綜上所述:在等腰三角形ADP中,

          PA=PD,則BP=2;

          DP=DA,則BP=4-;

          AP=AD,則BP=

          2)∵E、F分別為邊AB、AC的中點(diǎn),

          EFBCEF=BC

          BC=12,

          EF=6

          EF為直徑作⊙O,過點(diǎn)OOQBC,垂足為Q,連接EQ、FQ,如圖②.

          ADBC,AD=6,

          EFBC之間的距離為3

          OQ=3

          OQ=OE=3

          ∴⊙OBC相切,切點(diǎn)為Q

          EF為⊙O的直徑,

          ∴∠EQF=90°

          過點(diǎn)EEGBC,垂足為G,如圖②.

          EGBCOQBC,

          EGOQ

          EOGQEGOQ,∠EGQ=90°OE=OQ,

          ∴四邊形OEGQ是正方形.

          GQ=EO=3EG=OQ=3

          ∵∠B=60°,∠EGB=90°,EG=3,

          BG=

          BQ=GQ+BG=3+

          ∴當(dāng)∠EQF=90°時(shí),BQ的長為3+

          3)在線段CD上存在點(diǎn)M,使∠AMB=60°

          理由如下:

          AB為邊,在AB的右側(cè)作等邊三角形ABG,

          GPAB,垂足為P,作AKBG,垂足為K

          設(shè)GPAK交于點(diǎn)O,以點(diǎn)O為圓心,OA為半徑作⊙O

          過點(diǎn)OOHCD,垂足為H,如圖③.

          則⊙OABG的外接圓,

          ∵△ABG是等邊三角形,GPAB,

          AP=PB=AB

          AB=270

          AP=135

          ED=285,

          OH=285-135=150

          ∵△ABG是等邊三角形,AKBG

          ∴∠BAK=GAK=30°

          OP=APtan30°

          =135×

          =45

          OA=2OP=90

          OHOA

          ∴⊙OCD相交,設(shè)交點(diǎn)為M,連接MA、MB,如圖③.

          ∴∠AMB=AGB=60°,OM=OA=90..

          OHCD,OH=150OM=90,

          HM==30

          AE=400OP=45

          DH=400-45

          若點(diǎn)M在點(diǎn)H的左邊,則DM=DH+HM=400-45+30img src="http://thumb.zyjl.cn/questionBank/Upload/2020/02/15/08/332c7e85/SYS202002150806083393103338_DA/SYS202002150806083393103338_DA.003.png" width="19" height="21" style="-aw-left-pos:0pt; -aw-rel-hpos:column; -aw-rel-vpos:paragraph; -aw-top-pos:0pt; -aw-wrap-type:inline" />

          400-45+30340,

          DMCD

          ∴點(diǎn)M不在線段CD上,應(yīng)舍去.

          若點(diǎn)M在點(diǎn)H的右邊,則DM=DH-HM=400-45-30

          400-45-30340,

          DMCD

          ∴點(diǎn)M在線段CD上.

          綜上所述:在線段CD上存在唯一的點(diǎn)M,使∠AMB=60°,

          此時(shí)DM的長為(400-45-30)米.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在平行四邊形中,邊BCx軸上.BC=6,平行四邊形ABCD的面積為12,C是拋物線頂點(diǎn),A,D在拋物線上,求拋物線的解析式.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在平面直角坐標(biāo)系中,拋物線 y=ax2﹣5ax+c x 軸于點(diǎn) A,點(diǎn) A 的坐標(biāo)為(4,0).

          (1)用含 a 的代數(shù)式表示 c

          (2)當(dāng) a時(shí),求 x 為何值時(shí) y 取得最小值,并求出 y 的最小值.

          (3)當(dāng) a時(shí),求 0≤x≤6 時(shí) y 的取值范圍.

          (4)已知點(diǎn) B 的坐標(biāo)為(0,3),當(dāng)拋物線的頂點(diǎn)落在△AOB 外接圓內(nèi)部時(shí),直接寫出 a的取值范圍.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】在平面直角坐標(biāo)系xOy中,將拋物線y=﹣x2平移后經(jīng)過點(diǎn)A(﹣1,0)、B4,0),且平移后的拋物線與y軸交于點(diǎn)C(如圖).

          1)求平移后的拋物線的表達(dá)式;

          2)如果點(diǎn)D在線段CB上,且CD,求∠CAD的正弦值;

          3)點(diǎn)Ey軸上且位于點(diǎn)C的上方,點(diǎn)P在直線BC上,點(diǎn)Q在平移后的拋物線上,如果四邊形ECPQ是菱形,求點(diǎn)Q的坐標(biāo).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,直角△ABC內(nèi)接于⊙O,點(diǎn)D是直角△ABC斜邊AB上的一點(diǎn),過點(diǎn)DAB的垂線交ACE,過點(diǎn)C∠ECP=∠AED,CPDE的延長線于點(diǎn)P,連結(jié)PO⊙O于點(diǎn)F

          1)求證:PC⊙O的切線;

          2)若PC=3PF=1,求AB的長.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,已知直線l的解析式是y=x-4,并且與x軸、y軸分別交于A,B兩點(diǎn).一個(gè)半徑為1.5的☉C,圓心C從點(diǎn)(0,1.5)開始以每秒移動(dòng)0.5個(gè)單位長度的速度沿著y軸向下運(yùn)動(dòng),當(dāng)☉C與直線l相切時(shí),則該圓運(yùn)動(dòng)的時(shí)間為(  )

          A. 3 s6 sB. 6 s10 sC. 3 s16 sD. 6 s16 s

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在矩形ABCD中,AB4,AD5,ADAB、BC分別與O相切于點(diǎn)EF、G,過點(diǎn)DO的切線交BC于點(diǎn)M,切點(diǎn)為N,則DM的長為( 。

          A. B. C. D. 2

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】某商場用2700元購進(jìn)甲、乙兩種商品共100件,這兩種商品的進(jìn)價(jià)、標(biāo)價(jià)如下表所示:

          甲種

          乙種

          進(jìn)價(jià)(元/件)

          15

          35

          標(biāo)價(jià)(元/件)

          20

          45

          (1)求購進(jìn)兩種商品各多少件?

          (2)商品將兩種商品全部賣出后,獲得的利潤是多少元?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖1,在菱形ABCD中,對角線AC與BD相交于點(diǎn)O,AB=13,BD=24,在菱形ABCD的外部以AB為邊作等邊三角形 ABE.點(diǎn)F是對角線BD上一動(dòng)點(diǎn)(點(diǎn)F不與點(diǎn)B重合),將線段AF繞點(diǎn)A順時(shí)針方向旋轉(zhuǎn)60°得到線段AM,連接FM.

          (1)求AO的長;

          (2)如圖2,當(dāng)點(diǎn)F在線段BO上,且點(diǎn)M,F(xiàn),C三點(diǎn)在同一條直線上時(shí),求證:AC=AM;

          (3)連接EM,若AEM的面積為40,請直接寫出AFM的周長.

          查看答案和解析>>

          同步練習(xí)冊答案