日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知四邊形ABCD中,E,F(xiàn)分別是AB,AD邊上的點,DECF交于點G.

          (1)如圖1,若四邊形ABCD是矩形,且DECF.則DECD   CFAD(填“<”“=”“>”);

          (2)如圖2,若四邊形ABCD是平行四邊形,試探究:當(dāng)∠B與∠EGC滿足什么關(guān)系時,使得DECD=CFAD成立?并證明你的結(jié)論;

          (3)如圖3,若BA=BC=3,DA=DC=4,BAD=90°,DECF.則的值為   

          【答案】(1)=;(2)當(dāng)∠B+EGC=180°時,DECD=CFAD成立,證明見解析;(3)

          【解析】

          試題(1)根據(jù)矩形性質(zhì)得出∠A=∠FDC=90°,求出∠CFD=∠AED,證出△AED∽△DFC即可;

          2)當(dāng)∠B+∠EGC=180°時,成立,證△DFG∽△DEA,得出,證△CGD∽△CDF,得出,即可得出答案;

          3)過CCN⊥ADNCM⊥ABAB延長線于M,連接BD,設(shè)CN=x△BAD≌△BCD,推出∠BCD=∠A=90°,證△BCM∽△DCN,求出CM=x,在Rt△CMB中,由勾股定理得出,代入得出方程,求出CN=,證出△AED∽△NFC,即可得出答案.

          試題解析:(1)證明:四邊形ABCD是矩形,

          ∴∠A=∠FDC=90°,

          ∵CF⊥DE,

          ∴∠DGF=90°,

          ∴∠ADE+∠CFD=90°,∠ADE+∠AED=90°,

          ∴∠CFD=∠AED,

          ∵∠A=∠CDF,

          ∴△AED∽△DFC,

          ,即=.

          2)當(dāng)∠B+∠EGC=180°時,=成立.

          證明:四邊形ABCD是平行四邊形,

          ∴∠B=∠ADC,AD∥BC,

          ∴∠B+∠A=180°

          ∵∠B+∠EGC=180°,

          ∴∠A=∠EGC=∠FGD,

          ∵∠FDG=∠EDA,

          ∴△DFG∽△DEA,

          ,

          ∵∠B=∠ADC,∠B+∠EGC=180°,∠EGC+∠DGC=180°

          ∴∠CGD=∠CDF,

          ∵∠GCD=∠DCF

          ∴△CGD∽△CDF,

          ,

          ,

          ,

          即當(dāng)∠B+∠EGC=180°時,成立.

          3)解:

          理由是:過CCN⊥ADN,CM⊥ABAB延長線于M,連接BD,設(shè)CN=x,

          ∵AB⊥AD

          ∴∠A=∠M=∠CNA=90°,

          四邊形AMCN是矩形,

          ∴AM=CN,AN=CM

          △BAD△BCD

          ∴△BAD≌△BCDSSS),

          ∴∠BCD=∠A=90°,

          ∴∠ABC+∠ADC=180°,

          ∵∠ABC+∠CBM=180°

          ∴∠CBM=∠ADC,

          ∵∠CND=∠M=90°,

          ∴△BCM∽△DCN,

          ,

          Rt△CMB中,,BM=AM﹣AB=x﹣6,由勾股定理得:,

          ,

          解得 x=0(舍去),x=

          ∴CN=,

          ∵∠A=∠FGD=90°,

          ∴∠AED+∠AFG=180°,

          ∵∠AFG+∠NFC=180°,

          ∴∠AED=∠CFN

          ∵∠A=∠CNF=90°,

          ∴△AED∽△NFC

          考點: 相似三角形綜合題.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】中,,, 的角平分線.

          1)如圖 1,求證:

          2)如圖 2,作的角平分線交線段于點,若,求的面積;

          3)如圖 3,過點于點,點是線段上一點(不與 重合),以為一邊,在 的下方作延長線于點,試探究線段,之間的數(shù)量關(guān)系,并說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,一枚運載火箭從距雷達站C5km的地面O處發(fā)射,當(dāng)火箭到達點A,B時,在雷達站C測得點A,B的仰角分別為34°,45°,其中點O,A,B在同一條直線上.

          (1)A,B兩點間的距離(結(jié)果精確到0.1km).

          (2)當(dāng)運載火箭繼續(xù)直線上升到D處,雷達站測得其仰角為56°,求此時雷達站C和運載火箭D兩點間的距離(結(jié)果精確到0.1km).(參考數(shù)據(jù):sin34°=0.56,cos34°=0.83,tan34°=0.67.)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】某數(shù)學(xué)課外活動小組在做氣體壓強實驗時,獲得壓強p(Pa)與體積V(cm3)之間有下列對應(yīng)數(shù)據(jù):

          p(Pa)

          1

          2

          3

          4

          5

          V(cm3)

          6

          3

          2

          1.5

          1.2

          根據(jù)表中提供的信息,回答下列問題:

          (1)猜想p與V之間的關(guān)系,并求出函數(shù)關(guān)系式;

          (2)當(dāng)氣體的體積是12cm3時,壓強是多少?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】已知,在 中,,垂足分別為

          1)如圖1,求證:;

          2)如圖2,點的中點,連接.請判斷的形狀?并說明理由

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在 RtABC 中,∠C90°,∠A60°,AB10cm,若點M 從點 B 出發(fā)以 2cm/s 的速度向點 A 運動,點 N 從點 A 出發(fā)以 1cm/s 的速度向點 C 運動,設(shè) M、N 分別從點 BA 同時出發(fā),運動的時間為 ts

          (1)用含 t 的式子表示線段 AM、AN 的長;

          (2)當(dāng) t 為何值時,△AMN 是以 MN 為底邊的等腰三角形?

          (3)當(dāng) t 為何值時,MNBC?并求出此時 CN 的長.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在正方形ABCD中,點A在y軸正半軸上,點B的坐標(biāo)為(0,﹣3),反比例函數(shù)y=﹣的圖象經(jīng)過點C.

          (1)求點C的坐標(biāo);

          (2)若點P是反比例函數(shù)圖象上的一點且SPAD=S正方形ABCD;求點P的坐標(biāo).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】已知AB是⊙O的直徑,弦CDABH,過CD延長線上一點E作⊙O的切線交AB的延長線于F,切點為G,連接AGCDK

          1)如圖1,求證:KE=GE;

          2)如圖2,連接CABG,若∠FGB=ACH,求證:CAFE

          3)如圖3,在(2)的條件下,連接CGAB于點N,若sinE=,AK=,求CN的長.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,DEABE,DFACF,若BDCD,BECF,則下列結(jié)論:①DEDF;②AD平分∠BAC;③AEAD;④ACAB2BE中正確的是_____

          查看答案和解析>>

          同步練習(xí)冊答案