【題目】如圖,在菱形ABCD中,CE垂直對角線AC于點C,AB的延長線交CE于點E.
(1)求證:CD=BE;
(2)如果∠E=60°,CE=m,請寫出求菱形ABCD面積的思路.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】綜合數(shù)軸與絕對值的知識回答下列問題:
(1)數(shù)軸上表示和
的兩點之間的距離是 ;表示
和
兩點之間的距離是 ;一般地,數(shù)軸上表示數(shù)
和數(shù)
的兩點之間的距離等于
(2)如果,那么
.
(3)若,
,且數(shù)
,
在數(shù)軸上表示的數(shù)分別是點
,點
,則
,
兩點間的最大距離是 ,最小距離是 .
(4)若數(shù)軸上表示數(shù)a的點位于3與5之間,則|a+3|+|a5|=___.
(5)當(dāng) 時,
的值最小,最小值是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,AD//BC, ,BC=4,DC=3,AD=6.動點P從點D出發(fā),沿射線DA的方向,在射線DA上以每秒2兩個單位長的速度運動,動點Q從點C出發(fā),在線段CB上以每秒1個單位長的速度向點B運動,點P、Q分別從點D,C同時出發(fā),當(dāng)點Q運動到點B時,點P隨之停止運動.設(shè)運動的時間為t(秒).
(1)設(shè)的面積為
,直接寫出
與
之間的函數(shù)關(guān)系式是____________(不寫取值范圍).
(2)當(dāng)B,P,Q三點為頂點的三角形是等腰三角形時,求出此時的值.
(3)當(dāng)線段PQ與線段AB相交于點O,且2OA=OB時,直接寫出=_____________.
(4)是否存在時刻,使得
若存在,求出
的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是一張長方形紙片,長為
,
長為
.
(1)若將此長方形紙片繞它的一邊所在直線旋轉(zhuǎn)一周,則形成的幾何體是______;
(2)若將這個長方形紙片繞邊所在直線旋轉(zhuǎn)一周,則形成的幾何體的體積是____
(結(jié)果保留
);
(3)若將這個長方形紙片繞它的一邊所在直線旋轉(zhuǎn)一周,求形成的幾何體的表面積(結(jié)果保留).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市規(guī)定每月用水18噸以內(nèi)(包括18噸)的用戶,每噸收水費a元:一個月用水超過18噸的用戶,18噸水仍按每噸a元收費,超過18噸的部分,按每噸b元(ba)收費.設(shè)一戶居民每月用水x噸,應(yīng)收水費y元,y與x之間的函數(shù)關(guān)系如圖;
(1)求a的值,某戶居民上月用水10噸,應(yīng)收水費多少元;
(2)求b的值,并寫出當(dāng)x18時,y與x之間的函數(shù)關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中xOy中,拋物線的頂點在x軸上.
(1)求拋物線的表達(dá)式;
(2)點Q是x軸上一點,
①若在拋物線上存在點P,使得∠POQ=45°,求點P的坐標(biāo);
②拋物線與直線y=2交于點E,F(xiàn)(點E在點F的左側(cè)),將此拋物線在點E,F(xiàn)(包含點E和點F)之間的部分沿x軸平移n個單位后得到的圖象記為G,若在圖象G上存在點P,使得∠POQ=45°,求n的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】點A、B在數(shù)軸上分別表示有理數(shù)a、b,A、B兩點之間的距離表示為AB,在數(shù)軸上A、B兩點之間的距離AB=|a﹣b|.
利用數(shù)形結(jié)合思想回答下列問題:
(1)數(shù)軸上表示1和3兩點之間的距離 .
(2)數(shù)軸上表示﹣12和﹣6的兩點之間的距離是 .
(3)數(shù)軸上表示x和1的兩點之間的距離表示為 .
(4)若x表示一個有理數(shù),且﹣4<x<2,則|x﹣2|+|x+4|= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對于任意四個有理數(shù)a,b,c,d,可以組成兩個有理數(shù)對(a,b)與(c,d).我們規(guī)定: (a,b)★(c,d)=bc-ad.例如:(1,2)★(3,4)=2×3-1×4=2.根據(jù)上述規(guī)定解決下列問題:
(1)有理數(shù)對(2,3)★(3,-2)= ;
(2)若有理數(shù)對(-3,2x-1)★(1,x+1)=12,則x= ;
(3)當(dāng)滿足等式(-3,2x-1)★(k,x+k)=3+2k的x是整數(shù)時,求整數(shù)k的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知拋物線y=x2+bx+c經(jīng)過A、B、C三點,已知B(4,0),C(2,﹣6).
(1)求該拋物線的解析式和點A的坐標(biāo);
(2)點D(m,n)(﹣1<m<2)在拋物線圖象上,當(dāng)△ACD的面積為時,求點D的坐標(biāo);
(3)在(2)的條件下,設(shè)拋物線的對稱軸為l,點D關(guān)于l的對稱點為E,能否在拋物線圖象和l上分別找到點P、Q,使得以點D、E、P、Q為頂點的四邊形為平行四邊形?若能,求出點P的坐標(biāo);若不能,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com