日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】在等邊三角形ABC中,點DBC的中點,點E、F分別是邊ABAC(含線段AB、AC的端點)上的動點,且∠EDF120°,小明和小慧對這個圖形展開如下研究:

          問題初探:(1)如圖1,小明發(fā)現(xiàn):當∠DEB90°時,BE+CFnAB,則n的值為   ;

          問題再探:(2)如圖2,在點EF的運動過程中,小慧發(fā)現(xiàn)兩個有趣的結論:

          DE始終等于DF;②BECF的和始終不變;請你選擇其中一個結論加以證明.

          成果運用:3)若邊長AB8,在點E、F的運動過程中,記四邊形DEAF的周長為L,LDE+EA+AF+FD,則周長L 取最大值和最小值時E點的位置?

          【答案】1;(2)①見解析;②見解析;(3)周長L 取最大值時點E和點B重合或BE=4,取最小值時BE=2

          【解析】

          1)先利用等邊三角形判斷出BD=CD=AB,進而判斷出BE=BD,再判斷出∠DFC=90°,得出CF=CD,即可得出結論;

          2)①構造出△EDG≌△FDHASA),得出DE=DF,即可得出結論;
          ②由(1)知,BG+CH=AB,由①知,△EDG≌△FDHASA),得出EG=FH,即可得出結論;

          3)由(1)(2)判斷出L=2DE+12,再判斷出DEAB時,L最小,點F和點C重合時,DE最大,即可得出結論.

          解:(1)∵△ABC是等邊三角形,
          ∴∠B=C=60°,AB=BC,
          ∵點DBC的中點,
          BD=CD=BC=AB,
          ∵∠DEB=90°,
          ∴∠BDE=90°-B=30°,
          RtBDE中,BE=BD,
          ∵∠EDF=120°,∠BDE=30°,
          ∴∠CDF=180°-BDE-EDF=30°
          ∵∠C=60°,
          ∴∠DFC=90°,
          RtCFD中,CF=CD,
          BE+CF=BD+CD=BC=AB
          BE+CF=nAB,
          n=
          故答案為:;

          2)如圖,


          ①過點DDGABG,DHACH,
          ∴∠DGB=AGD=CHD=AHD=90°,
          ∵△ABC是等邊三角形,
          ∴∠A=60°,
          ∴∠GDH=360°-AGD-AHD-A=120°,
          ∵∠EDF=120°
          ∴∠EDG=FDH,
          ∵△ABC是等邊三角形,且DBC的中點,
          ∴∠BAD=CAD
          DGAB,DHAC
          DG=DH,
          在△EDG和△FDH中,

          ,
          ∴△EDG≌△FDHASA),
          DE=DF
          即:DE始終等于DF;
          ②同(1)的方法得,BG+CH=AB
          由①知,△EDG≌△FDHASA),
          EG=FH,
          BE+CF=BG-EG+CH+FH=BG+CH=AB
          BECF的和始終不變;

          3)由(2)知,DE=DF,BE+CF=AB
          AB=8,
          BE+CF=4,
          ∴四邊形DEAF的周長為L=DE+EA+AF+FD
          =DE+AB-BE+AC-CF+DF
          =DE+AB-BE+AB-CF+DE
          =2DE+2AB-BE+CF
          =2DE+2×8-4
          =2DE+12,
          DE最大時,L最大,DE最小時,L最小,
          DEAB時,DE最小,L最小,

          此時∠BDE=90°-60°=30°,

          BE=BD=2,

          當點F和點C重合或點E和點B重合時,DE最大,點F和點C重合時,∠BDE=180°-EDF=120°=60°,
          ∵∠B=60°,
          ∴∠B=BDE=BED=60°,
          ∴△BDE是等邊三角形,
          BE=DE=BD=AB=4,

          當點E和點B重合時,DE=BD=4,周長L 有最大值,
          即周長L 取最大值時點E和點B重合或BE=4,取最小值時BE=2

          練習冊系列答案
          相關習題

          科目:初中數(shù)學 來源: 題型:

          【題目】某公司生產(chǎn)的某種時令商品每件成本為20元,經(jīng)過市場調(diào)研發(fā)現(xiàn),這種商品在未來40天內(nèi)的日銷售量m(件)與時間t(天)的關系滿足:m=﹣2t+96.且未來40天內(nèi),前20天每天的價格y1(元/件)與時間t(天)的函數(shù)關系式為y1=t+25(1≤t≤20t為整數(shù)),后20天每天的價格y2(元/件)與時間t(天)的函數(shù)關系式為y2=﹣t+40(21≤t<40t為整數(shù)).下面我們就來研究銷售這種商品的有關問題

          (1)請分別寫出未來40天內(nèi),20天和后20天的日銷售利潤w(元)與時間t的函數(shù)關系式;

          (2)請預測未來40天中哪一天的日銷售利潤最大,最大日銷售利潤是多少?

          (3)在實際銷售的前20天中,該公司決定每銷售一件商品就捐贈a元利潤(a<4)給希望工程.公司通過銷售記錄發(fā)現(xiàn),前20天中,每天扣除捐贈后的日銷售利潤隨時間t(天)的增大而增大,求a的取值范圍.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,ABC是等邊三角形,DBC邊上一個動點(DB、C均不重合),AD=AE,∠DAE=60°,連接CE

          1)求證:ABD≌△ACE;

          2)求證:CE平分∠ACF

          3)若AB=2,當四邊形ADCE的周長取最小值時,求BD的長.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】凸四邊形的四個頂點滿足:每一個頂點到其他三個頂點距離之積都相等.則四邊形一定是(

          A. 正方形 B. 菱形 C. 等腰梯形 D. 矩形

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,△ABC中,ABAC

          (1)請你利用直尺和圓規(guī)完成如下操作:

          ①作△ABC的角平分線AD;

          ②作邊AB的垂直平分線EF,EFAD相交于點P;

          ③連接PBPC

          請你觀察圖形解答下列問題:

          2)線段PA,PB,PC之間的數(shù)量關系是   ;請說明理由.

          3)若∠ABC70°,求∠BPC的度數(shù).

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】七年級某班為準備科技節(jié)表彰的獎品,計劃從友誼超市購買筆記本和水筆共40件,在獲知某網(wǎng)店有五一促銷活動后,決定從該網(wǎng)店購買這些獎品.已知筆記本和水筆在這兩家商店的零售價分別如下表,且在友誼超市購買這些獎品需花費90元.

          品名商店

          筆記本(元/件)

          水筆(元/件)

          友誼超市

          2.4

          2

          網(wǎng)店

          2

          1.8

          1)請求出需購買筆記本和水筆的數(shù)量;

          2)求從網(wǎng)店購買這些獎品可節(jié)省多少元.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,將沿著過中點的直線折疊,使點落在邊上的處,稱為第次操作,折痕的距離記為,還原紙片后,再將沿著過中點的直線折疊,使點落在邊上的處,稱為第次操作,折痕的距離記為;按上述方法不斷操作下去,經(jīng)過第次操作后得到的折痕,到的距離記為;若,則的值為________

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,在△ABC中,AD是高,AEBF是角平分線,它們相交于點O,∠BAC=50°,∠C=70°,求∠DAC和∠BOA的度數(shù)

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,在平面直角坐標系中,A(﹣1,5)、B(﹣1,0)、C(﹣4,3).

          1)請畫出△ABC關于y軸對稱的△DEF(其中D、E、F分別是AB、C的對應點).

          2)直接寫出(1)中F點的坐標為   

          3)若直線l經(jīng)過點(0,﹣2)且與x軸平行,則點C關于直線l的對稱點的坐標為   

          4)在y軸上存在一點P,使PCPB最大,則點P的坐標為   

          5)第一象限有一點M4,2),在x軸上找一點Q使CQ+MQ最短,畫出最短路徑,保留作圖痕跡.

          查看答案和解析>>

          同步練習冊答案