日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】正方形ABCD中,點E、F分別是邊AD、AB的中點,連接EF.

          (1)如圖1,若點G是邊BC的中點,連接FG,則EF與FG關系為   ;

          (2)如圖2,若點P為BC延長線上一動點,連接FP,將線段FP以點F為旋轉中心,逆時針旋轉900,得到線段FQ,連接EQ,請猜想EF、EQ、BP三者之間的數(shù)量關系,并證明你的結論;

          (3)若點P為CB延長線上一動點按照(2)中的作法,在圖3中補全圖形并直接寫出EF、EQ、BP三者之間的數(shù)量關系    .

          【答案】解:(1)垂直且相等。

          (2)EF、EQ、BP三者之間的數(shù)量關系為。

          證明如下:

          如圖,取BC的中點G,連接FG,

          由(1)得EF=FG,EFFG,

          根據旋轉的性質,F(xiàn)P=FQ,PFQ =90°。

          ∴∠GFP=GFE—EFP=90°—EFP,

          EFQ=PFQ—EFP=90°—EFP。

          ∴∠GFP=EFQ。

          FQE和FPG中,EF=GF,EFQ=GFP,F(xiàn)Q = FP,

          FQE≌△FPG(SAS)。EQ=GP。

          。

          (3)補圖如下,F(xiàn)、EQ、BP三者之間的數(shù)量關系為:。

          【解析】

          試題分析:(1)EF與FG關系為垂直且相等(EF=FG且EFFG)。證明如下:

          點E、F、G分別是正方形邊AD、AB、BC的中點,

          ∴△AEF和BGD是兩個全等的等腰直角三角形。

          EF=FG,AFE=BFG=45°。∴∠EFG=90°,即EFFG。

          (2)取BC的中點G,連接FG,則由SAS易證FQE≌△FPG,從而EQ=GP,因此。

          (3)同(2)可證FQE≌△FPG(SAS),得EQ=GP,因此,

          。

          練習冊系列答案
          相關習題

          科目:初中數(shù)學 來源: 題型:

          【題目】下列各點中,在第四象限的點是(
          A.(2,4)
          B.(2,﹣4)
          C.(﹣2,4)
          D.(﹣2,﹣4)

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,已知BE=CF,AB∥CD,AB=CD.求證:AF∥DE.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】若x=2是方程x2+x﹣a=0的一個根,則a的值為

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】為了培養(yǎng)學生的閱讀習慣,某校開展了“讀好書,助成長”系列活動,并準備購置一批圖書,購書前 ,對學生喜歡閱讀的圖書類型進行了抽樣調查,并將調查數(shù)據繪制成兩幅不完整的統(tǒng)計圖,如圖所示,根據統(tǒng)計圖所提供的信息,回答下列問題:

          (1)本次調查共抽查了 名學生,兩幅統(tǒng)計圖中的m= ,n= .

          (2)已知該校共有960名學生,請估計該校喜歡閱讀“A”類圖書的學生約有多少人?

          (3)學校要舉辦讀書知識競賽,七年(1)班要在班級優(yōu)勝者2男1女中隨機選送2人參賽,求選送的兩名參賽學生為1男1女的概率是多少?

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】y(m1)x|m|3m表示一次函數(shù),則m等于(  )

          A. 1 B. 1 C. 0或-1 D. 1或-1

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】某市政府大力扶持大學生創(chuàng)業(yè).李明在政府的扶持下投資銷售一種進價為每件20元的護眼臺燈.銷售過程中發(fā)現(xiàn),每月銷售量y(件)與銷售單價x(元)之間的關系可近似的看作一次函數(shù):

          (1)設李明每月獲得利潤為w(元),當銷售單價定為多少元時,每月可獲得最大利潤?

          (2)如果李明想要每月獲得2000元的利潤,那么銷售單價應定為多少元?

          (3)根據物價部門規(guī)定,這種護眼臺燈的銷售單價不得高于32元,如果李明想要每月獲得的利潤不低于2000元,那么他每月的成本最少需要多少元?(成本=進價×銷售量)

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】為了了解某地區(qū)3500名初中畢業(yè)生的數(shù)學成績,從中抽出20本試卷,每本30份,其中個體是_________

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖1,∠MON=90°,點A、B分別在OM、ON上運動(不與點O重合).
          (1)若BC是∠ABN的平分線,BC的反方向延長線與∠BAO的平分線交與點D. ①若∠BAO=60°,則∠D=°.
          ②猜想:∠D的度數(shù)是否隨A,B的移動發(fā)生變化?并說明理由
          (2)若∠ABC= ∠ABN,∠BAD= ∠BAO,則∠D=°.
          (3)若將“∠MON=90°”改為“∠MON=α(0°<α<180°)”,∠ABC= ∠ABN,∠BAD= ∠BAO,其余條件不變,則∠D=°(用含α、n的代數(shù)式表示)

          查看答案和解析>>

          同步練習冊答案