日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,已知ABC是等邊三角形,D、F分別為BCAB邊上的點(diǎn),AF=BD,AD為邊作等邊ΔADE.

          (1)求證:AE=CF;

          (2)求∠BEF的度數(shù).

          【答案】(1)見(jiàn)解析;(2)BEF=60°

          【解析】

          1)由ΔABC是等邊三角形,可知AC=AB,∠CAB=ABC=60°,又由AF=BD,根據(jù)SAS定理得出△ACFΔBAD,從而得出CF=AD.又由△ADE是等邊三角形,AE=AD,進(jìn)而得出AE=CF.

          2)由ABCAED都是等邊三角形,得出AB=AC,AE=AD,∠BAC=EAD=60°,進(jìn)而得出∠BAE=CAD,SAS定理判定ΔABE≌△ACD,得出BE=CD,ABE=ACD,又由AB=BC,AF=BD,得出BF=DC,進(jìn)而得出BE=BF,又由∠EBF=ACD=60°,即可得出∠BEF=60°.

          (1) 證明:∵ΔABC是等邊三角形,

          AC=AB,∠CAB=ABC=60°

          又∵AF=BD

          ∴△ACFΔBAD(SAS),

          CF=AD.

          ∵△ADE是等邊三角形,

          AE=AD,

          AE=CF.

          (2)ABC和△AED都是等邊三角形,

          AB=AC,AE=AD,∠BAC=EAD=60°,

          ∴∠BAE=CAD,

          ΔABE≌△ACD(SAS),

          BE=CD,ABE=ACD,

          又∵AB=BC,AF=BD,

          BF=DC,

          BE=BF

          又∵∠EBF=ACD=60°,

          BEF為等邊三角形.

          ∴∠BEF=60°

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】某校在數(shù)學(xué)小論文評(píng)比活動(dòng)中,共征集到論文100篇,對(duì)論文評(píng)比的分?jǐn)?shù)(分?jǐn)?shù)為整數(shù))整理后,分組畫(huà)出頻數(shù)分布直方圖(如圖),已知從左到右5個(gè)小長(zhǎng)方形的高的比為l:3:7:6:3,那么在這次評(píng)比中被評(píng)為優(yōu)秀的論文(分?jǐn)?shù)大于或等于80分為優(yōu)秀)有____篇.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】我市某蔬菜生產(chǎn)基地在氣溫較低時(shí),用裝有恒溫系統(tǒng)的大棚栽培一種在自然光照且溫度為18 ℃的條件下生長(zhǎng)最快的新品種.如圖是某天恒溫系統(tǒng)從開(kāi)啟到關(guān)閉及關(guān)閉后,大棚內(nèi)溫度y(℃)隨時(shí)間x(小時(shí))變化的函數(shù)圖象,其中BC段是雙曲線(xiàn)y=的一部分.請(qǐng)根據(jù)圖中信息解答下列問(wèn)題:

          (1)恒溫系統(tǒng)在這天保持大棚內(nèi)溫度18 ℃的時(shí)間有多少小時(shí)?

          (2)求k的值;

          (3)當(dāng)x=16時(shí),大棚內(nèi)的溫度約為多少度?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】隨著越來(lái)越多年輕家長(zhǎng)對(duì)低幼階段孩子英語(yǔ)口語(yǔ)的重視,某APP順勢(shì)推出了北美外教在線(xiàn)授課系列課程,提供A課程、B課程兩種不同課程供家長(zhǎng)選擇.已知購(gòu)買(mǎi)A課程”3課時(shí)與B課程”5課時(shí)共需付款410元,購(gòu)買(mǎi)A課程”5課時(shí)與B課程”3課時(shí)共需付款470元.

          1)請(qǐng)問(wèn)購(gòu)買(mǎi)A課程”1課時(shí)多少元?購(gòu)買(mǎi)B課程”1課時(shí)多少元?

          2)根據(jù)市場(chǎng)調(diào)研,APP銷(xiāo)售A課程”1課時(shí)獲利25元,銷(xiāo)售B課程”1課時(shí)獲利20元,臨近春節(jié),小融計(jì)劃用不低于3000元且不超過(guò)3600元的壓歲錢(qián)購(gòu)買(mǎi)兩種課程共60課時(shí),請(qǐng)問(wèn)購(gòu)買(mǎi)A課程多少課時(shí)才使得APP的獲利最高?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】RtABC中,∠ACB90°,∠A30°BC3cm,動(dòng)點(diǎn)P從點(diǎn)A出發(fā),沿AB方向以每秒2cm的速度向終點(diǎn)B運(yùn)動(dòng);同時(shí),動(dòng)點(diǎn)Q從點(diǎn)B出發(fā)沿BC力向以每秒1cm的速度向終點(diǎn)C運(yùn)動(dòng),將PQC翻折,點(diǎn)P的對(duì)應(yīng)點(diǎn)為R,設(shè)點(diǎn)Q運(yùn)動(dòng)的時(shí)間為t秒,若四邊形PCRQ為菱形,則t的值為(  )

          A. B. 2C. 1D.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,在△ABC中,AD平分∠BAC,按如下步驟作圖:第一步,分別以點(diǎn)A、D為圓心,以大于的長(zhǎng)為半徑在AD的兩側(cè)作弧,交于兩點(diǎn)M、N;第二步,連結(jié)MN,分別交ABAC于點(diǎn)E、F;第三步,連結(jié)DE、DF..若BD=6AF=4,CD=3,則BE的長(zhǎng)是( )

          A. 2 B. 4 C. 6 D. 8

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,在平面直角坐標(biāo)系中,ABC的三個(gè)頂點(diǎn)坐標(biāo)分別為A(-2,1),B(-1,4),C(-3,2).

          (1)以原點(diǎn)O為位似中心,相似比為12,在y軸的左側(cè),畫(huà)出ABC放大后的圖形A1B1C1,并直接寫(xiě)出C1點(diǎn)的坐標(biāo);

          (2)若點(diǎn)D(a,b)在線(xiàn)段AB上,請(qǐng)直接寫(xiě)出經(jīng)過(guò)(1)的變化后點(diǎn)D的對(duì)應(yīng)點(diǎn)D1的坐標(biāo).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】1)解不等式24x-1≥5x-8,并把它的解集在數(shù)軸上表示出來(lái).

          2)如圖,在平面直角坐標(biāo)系xOy中,ABC的三個(gè)頂點(diǎn)的坐標(biāo)分別是A-3,0),B-6-2C-2,-5).將ABC向上平移3個(gè)單位長(zhǎng)度,再向右平移5個(gè)單位長(zhǎng)度,得到A1B1C1

          ①在平面直角坐標(biāo)系xOy中畫(huà)出A1B1C1

          ②求A1B1C1的面積.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,反比例函數(shù)的圖象經(jīng)過(guò)點(diǎn)A、B,點(diǎn)A的坐標(biāo)為(1,3),點(diǎn)B的縱坐標(biāo)為1,點(diǎn)C的坐標(biāo)為(2,0)

          (1)求該反比例函數(shù)的表達(dá)式;

          (2)求直線(xiàn)BC的表達(dá)式.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案