日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】問題情景:如圖1,ABCD,PAB=140°,PCD=135°,求∠APC的度數(shù).

          (1)麗麗同學(xué)看過圖形后立即口答出:∠APC=85°,請(qǐng)你補(bǔ)全她的推理依據(jù).

          如圖2,過點(diǎn)PPEAB,

          ABCD,PECD. (   

          ∴∠A+APE=180°.

          C+CPE=180°. (   

          ∵∠PAB=140°,PCD=135°,

          ∴∠APE=40°,CPE=45°

          ∴∠APC=APE+CPE=85°.(   

          問題遷移:

          (2)如圖3,ADBC,當(dāng)點(diǎn)PA、B兩點(diǎn)之間運(yùn)動(dòng)時(shí),∠ADP=α,BCP=β,求∠CPD與∠α、β之間有何數(shù)量關(guān)系?請(qǐng)說明理由.

          (3)在(2)的條件下,如果點(diǎn)PA、B兩點(diǎn)外側(cè)運(yùn)動(dòng)時(shí)(點(diǎn)P與點(diǎn)A、B、O三點(diǎn)不重合),請(qǐng)你直接寫出∠CPD與∠α、β之間的數(shù)量關(guān)系.

          【答案】(1)平行于同一條直線的兩條直線平行;兩直線平行,同旁內(nèi)角互補(bǔ);等量代換;(2)CPD=α+β,理由見解析;(3)當(dāng)PBA延長線時(shí),∠CPD=β﹣α;當(dāng)PAB延長線時(shí),∠CPD=α﹣β.

          【解析】(1) 過點(diǎn)PPE∥AB,根據(jù)“兩直線平行,同旁內(nèi)角互補(bǔ)”可得∠A+∠APE=180°,∠C+∠CPE=180°;進(jìn)一步可求得結(jié)果.(2)PPE∥ADCDE,AD∥PE∥BC,根據(jù)“兩直線平行,內(nèi)錯(cuò)角相等”可得∠α=∠DPE,∠β=∠CPE,因此,∠CPD=∠DPE+∠CPE=∠α+∠β;(3)類似(2)的方法,分兩種情況,即:PBA延長線時(shí)或在AB延長線時(shí).可得出結(jié)論..

          解:(1)過點(diǎn)PPEAB,

          如圖2所示:

          ABCD,

          PECD.(平行于同一條直線的兩條直線平行)

          ∴∠A+APE=180°.

          C+CPE=180°.(兩直線平行同旁內(nèi)角互補(bǔ))

          ∵∠PAB=140°,PCD=135°,

          ∴∠APE=40°,CPE=45°,

          ∴∠APC=APE+CPE=85°.(等量代換)

          故答案為:平行于同一條直線的兩條直線平行;兩直線平行,同旁內(nèi)角互補(bǔ);等量代換;

          (2)CPD=α+β,理由如下:

          如圖3所示,過PPEADCDE,

          ADBC,

          ADPEBC,

          ∴∠α=DPE,β=CPE,

          ∴∠CPD=DPE+CPE=α+β;

          (3)當(dāng)PBA延長線時(shí),如圖4所示:

          PPEADCDE,

          同(2)可知:∠α=DPE,β=CPE,

          ∴∠CPD=β﹣α;

          當(dāng)PAB延長線時(shí),如圖5所示:

          同(2)可知:∠α=DPE,β=CPE,

          ∴∠CPD=α﹣β.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】對(duì)非負(fù)實(shí)數(shù)x“四舍五入到個(gè)位的值記為<x>,即當(dāng)n為非負(fù)整數(shù)時(shí),若,則<x>n,如<0.46>=0,<3.67>=4。給出下列關(guān)于<x>的結(jié)論:

          ①<1.493>=1;

          ②<2x>=2<x>;

          ,則實(shí)數(shù)x的取值范圍是

          當(dāng)x≥0,m為非負(fù)整數(shù)時(shí),有;

          。

          其中,正確的結(jié)論有  (填寫所有正確的序號(hào))。

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】吸煙有害健康,為配合“戒煙”運(yùn)動(dòng),某校組織同學(xué)們?cè)谏鐓^(qū)開展了“你支持哪種戒煙方式”的隨機(jī)問卷調(diào)查,并將調(diào)查結(jié)果繪制成兩幅不完整的統(tǒng)計(jì)圖:據(jù)統(tǒng)計(jì)圖解答下列問題:
          (1)同學(xué)們一共調(diào)查了多少人?
          (2)將條形統(tǒng)計(jì)圖補(bǔ)充完整.
          (3)若該社區(qū)有1萬人,請(qǐng)你估計(jì)大約有多少人支持“警示戒煙”這種方式?
          (4)為了讓更多的市民增強(qiáng)“戒煙”意識(shí),同學(xué)們?cè)谏鐓^(qū)做了兩期“警示戒煙”的宣傳.若每期宣傳后,市民支持“警示戒煙”的平均增長率為20%,則兩期宣傳后支持“警示戒煙”的市民約有多少人?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,∠BAC與∠CBE的平分線相交于點(diǎn)PBEBC,PBCE交于點(diǎn)H,PGADBCF,交ABG,下列結(jié)論:① GAGP; SPACSPABACAB; BP垂直平分CE FPFC,其中正確的判斷有(

          A. 只有①② B. 只有③④ C. 只有①③④ D. ①②③④

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】平面直角坐標(biāo)系中,已知A(2,2)B(4,0).若在坐標(biāo)軸上取點(diǎn)C,使ABC為等腰三角形,則滿足條件的點(diǎn)C的個(gè)數(shù)是__________.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】為了解某品牌電風(fēng)扇銷售量的情況,對(duì)某商場(chǎng)5月份該品牌甲、乙、丙三種型號(hào)的電風(fēng)扇銷售量進(jìn)行統(tǒng)計(jì),繪制如下兩個(gè)統(tǒng)計(jì)圖(均不完整).請(qǐng)你結(jié)合圖中的信息,解答下列問題:

          (1)該商場(chǎng)5月份售出這種品牌的電風(fēng)扇共多少臺(tái)?

          (2)若該商場(chǎng)計(jì)劃訂購這三種型號(hào)的電風(fēng)扇共2000臺(tái),根據(jù)5月份銷售量的情況,求該商場(chǎng)應(yīng)訂購丙種型號(hào)電風(fēng)扇多少臺(tái)比較合理?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】(1)如圖1,已知:在△ABC中,AB=AC=10,BD平分∠ABC,CD平分∠ACB,過點(diǎn)DEF∥BC,分別交AB、ACE、F兩點(diǎn),則圖中共有__________個(gè)等腰三角形;EFBE、CF之間的數(shù)量關(guān)系是__________,△AEF的周長是__________;

          (2)如圖2,若將(1)中“△ABC中,AB=AC=10”該為△ABC為不等邊三角形,AB=8,AC=10”其余條件不變,則圖中共有__________個(gè)等腰三角形;EFBE、CF之間的數(shù)量關(guān)系是什么?證明你的結(jié)論,并求出△AEF的周長;

          (3)已知:如圖3,D△ABC外,AB>AC,且BD平分∠ABC,CD平分△ABC的外角∠ACG,過點(diǎn)DDE∥BC,分別交AB、ACE、F兩點(diǎn),則EFBE、CF之間又有何數(shù)量關(guān)系呢?直接寫出結(jié)論不證明

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,四邊形ABCD是平行四邊形,E,F(xiàn)是對(duì)角線BD上的點(diǎn),∠1=∠2.

          求證:(1)BE=DF;(2)AF∥CE.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,點(diǎn)是反比例函數(shù)圖像上一點(diǎn),作軸于點(diǎn),且的面積為,點(diǎn)坐標(biāo)為

          )求的值.

          )若直線經(jīng)過點(diǎn),交另一支雙曲線于點(diǎn),求的面積.

          )指出取何值時(shí),一次函數(shù)的值大于反比例函數(shù)的值,直接寫出結(jié)果.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案