日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 正三角形ABC,AB=2,點D、E分別在AC,BC上且DE∥AB、DE=數(shù)學公式.將△CDE繞點C順時針旋轉(zhuǎn)得到△CD′E′(如圖D′,E′分別與點D,E對應),E′正好在AB上,D′E′與AC相交于點M.
          (1)則∠AC E′=______;
          (2)求證:四邊形ABC D′是梯形;
          (3)求△AD′M的面積.

          (1)解:∵等邊△ABC的邊長AB=2,
          ∴高線=2×=,
          ∵△CDE旋轉(zhuǎn)后點E的對應點E′正好在AB上,
          ∴CE′是△ABC的高,
          ∴∠ACE′=∠ABC=×60°=30°;

          (2)證明:∵DE∥AB,
          ∴△CDE也是等邊三角形,
          ∵△CDE繞點C順時針旋轉(zhuǎn)得到△CD′E′,
          ∴∠ACD′=60°-30°=30°,
          ∴∠ACE′=∠ACD′,
          ∴AC是D′E′的垂直平分線,
          ∴∠CAD′=CAE′=60°,
          ∴∠CAD′=∠ACB,
          ∴AD′∥BC,
          由圖可知,AB與CD′不平行,
          ∴四邊形ABC D′是梯形;

          (3)解:∵∠ACD′=30°,∠CD′E′=60°,
          ∴∠CMD′=80°-30°-60°=90°,
          ∵DE=,
          ∴CM=×=,D′M=D′E′=,
          又∵AC=2,
          ∴AM=2-=
          ∴△AD′M的面積=AM•D′M=××=
          分析:(1)根據(jù)等邊三角形的性質(zhì)求出DE等于△ABC的高,從而得到CE′是△ABC的高,再根據(jù)等腰三角形三線合一的性質(zhì)解答;
          (2)先求出△CDE是等邊三角形,再根據(jù)等邊三角形的性質(zhì)求出∠ACE′=∠ACD′,然后判斷出AC是D′E′的垂直平分線,根據(jù)線段垂直平分線的性質(zhì)求出∠CAD′=CAE′=60°,然后求出∠CAD′=∠ACB,再根據(jù)內(nèi)錯角相等,兩直線平行判斷出AD′∥BC,然后根據(jù)梯形的定義證明即可;
          (3)先求出∠CMD′=90°,再根據(jù)等邊三角形的性質(zhì)求出CM、MD′的長,再根據(jù)直角三角形的面積公式列式計算即可得解.
          點評:本題考查了旋轉(zhuǎn)的性質(zhì),等邊三角形的判定與性質(zhì),梯形的判定,以及三角形的面積的求解,熟練掌握等邊三角形的性質(zhì),高線與邊長的關(guān)系是解題的關(guān)鍵.
          練習冊系列答案
          相關(guān)習題

          科目:初中數(shù)學 來源: 題型:

          已知正三角形ABC,AB=a,點P,Q分別從A,C兩點同時出發(fā),以相同速度作直線運動,且點P沿射線AB方向運動,點Q沿射線BC方向運動.設AP的長為x,△PCQ的面積為S,
          (1)求S關(guān)于x的函數(shù)關(guān)系式;
          (2)當AP的長為多少時,△PCQ的面積和△ABC的面積相等?

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          正三角形ABC,AB=2,點D、E分別在AC,BC上且DE∥AB、DE=
          3
          .將△CDE繞點C順時針旋轉(zhuǎn)得到△CD′E′(如圖D′,E′分別與點D,E對應),E′正好在AB上,D′E′與AC相交于點M.
          (1)則∠AC E′=
          30°
          30°
          ;
          (2)求證:四邊形ABC D′是梯形;
          (3)求△AD′M的面積.

          查看答案和解析>>

          科目:初中數(shù)學 來源:數(shù)學教研室 題型:044

          已知如圖,正三角形ABCAB=1cm,O為中心,以ABBC,AC為弦作三等弧交于O.求圖中陰影部分周界長.

           

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:解答題

          已知正三角形ABC,AB=a,點P,Q分別從A,C兩點同時出發(fā),以相同速度作直線運動,且點P沿射線AB方向運動,點Q沿射線BC方向運動.設AP的長為x,△PCQ的面積為S,
          (1)求S關(guān)于x的函數(shù)關(guān)系式;
          (2)當AP的長為多少時,△PCQ的面積和△ABC的面積相等?

          查看答案和解析>>

          同步練習冊答案