【題目】如圖,在平面直角坐標(biāo)系中,已知△ABC三個(gè)頂點(diǎn)的坐標(biāo)分別是A(2,2),B(3,0),C(1,﹣1),AC交x軸于點(diǎn)P.
(1)∠ACB的度數(shù)為_____;
(2)P點(diǎn)坐標(biāo)為______;
(3)以點(diǎn)O為位似中心,將△ABC放大為原來(lái)的2倍,請(qǐng)?jiān)趫D中畫(huà)出所有符合條件的三角形.
【答案】(1)45°;(2)(,0);(3)見(jiàn)解析.
【解析】
(1)由題意得到三角形ABC為等腰直角三角形,即可確定出所求角度數(shù);
(2)利用待定系數(shù)法求出直線(xiàn)AC解析式,即可確定出P坐標(biāo);
(3)以為位似中心,將△ABC放大為原來(lái)的2倍,畫(huà)出相應(yīng)圖形,如圖所示.
(1)∵∠ABC=90°,AB=CB=,
∴△ABC為等腰直角三角形,
∴∠ACB=45°;
故答案為:45°;
(2)由題意得:A(2,2),C(1,﹣1),
設(shè)直線(xiàn)AC解析式為y=kx+b,
把A與C坐標(biāo)代入得: ,
解得:,即直線(xiàn)AC解析式為y=3x﹣4,
令y=0,得到x=,
則P的坐標(biāo)為(,0);
故答案為:(,0);
(3)如圖所示:△A1B1C1和△A2B2C2為所求三角形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我市城建公司新建了一個(gè)購(gòu)物中心,共有商鋪30間,據(jù)調(diào)查分析,當(dāng)每間的年租金為10萬(wàn)元時(shí),可全部租出:若每間的年租金每增加0.5萬(wàn)元,則少租出商鋪一間,為提供優(yōu)質(zhì)服務(wù),城建公司引入物業(yè)公司代為管理,租出的商鋪每間每年需向物業(yè)公司繳納物業(yè)費(fèi)1萬(wàn)元,未租出的商鋪不需要向物業(yè)公司繳納物業(yè)費(fèi).
(1)當(dāng)每間商鋪的年租金定為13萬(wàn)元時(shí),能租出 間.
(2)當(dāng)每問(wèn)商鋪的年租金定為多少萬(wàn)元時(shí),該公司的年收益為286萬(wàn)元,且使租客獲得實(shí)惠?(收益=租金﹣物業(yè)費(fèi))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC 中,∠BAC=90°,分別以 AC 和 BC 為邊向外作正方形 ACFG 和正方形 BCDE,過(guò)點(diǎn) D 做 FC 的延長(zhǎng)線(xiàn)的垂線(xiàn),垂足為點(diǎn) H.
(1)求證:△ABC≌△HDC;
(2)連接 FD,交 AC 的延長(zhǎng)線(xiàn)于點(diǎn) M,若 AG= ,tan∠ABC=
,求△FCM 的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形中,
,延長(zhǎng)
交
于點(diǎn)
,延長(zhǎng)
交
于點(diǎn)
,過(guò)點(diǎn)
作
,交
的延長(zhǎng)線(xiàn)于點(diǎn)
,
,則
=_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在菱形ABCD中,∠B=60°,BC=6,E為BC中點(diǎn),F是AB上一點(diǎn),G為AD上一點(diǎn),且BF=2,∠FEG=60°,EG交AC于點(diǎn)H,下列結(jié)論:①△BEF∽△CHE;②AG=1;③EH=;④S△BEF=3S△AGH;正確的是______.(填序號(hào)即可)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀下列材料,并按要求解答.
(模型介紹)
如圖①,C是線(xiàn)段A、B上一點(diǎn)E、F在AB同側(cè),且∠A=∠B=∠ECF=90°,看上去像一個(gè)“K“,我們稱(chēng)圖①為“K”型圖.
(性質(zhì)探究)
性質(zhì)1:如圖①,若EC=FC,△ACE≌△BFC
性質(zhì)2:如圖①,若EC≠FC,△ACE~△BFC且相似比不為1.
(模型應(yīng)用)
應(yīng)用1:如圖②,在四邊形ABCD中,∠ADC=90°,AD=1,CD=2,BC=2,AB=5.求BD.
應(yīng)用2:如圖③,已知△ABC,分別以AB、AC為邊向外作正方形ABGF、正方形ACDE,AH⊥BC,連接EF.交AH的反向延長(zhǎng)線(xiàn)于點(diǎn)K,證明:K為EF中點(diǎn).
(1)請(qǐng)你完成性質(zhì)1的證明過(guò)程;
(2)請(qǐng)分別解答應(yīng)用1,應(yīng)用2提出的問(wèn)題.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】李航想利用太陽(yáng)光測(cè)量樓高.他帶著皮尺來(lái)到一棟樓下,發(fā)現(xiàn)對(duì)面墻上有這棟樓的影子,針對(duì)這種情況,他設(shè)計(jì)了一種測(cè)量方案,具體測(cè)量情況如下:如示意圖,李航邊移動(dòng)邊觀察,發(fā)現(xiàn)站到點(diǎn)E處時(shí),可以使自己落在墻上的影子與這棟樓落在墻上的影子重疊,且高度恰好相同.此時(shí),測(cè)得李航落在墻上的影子高度CD=1.2m,CE=0.6m,CA=30m(點(diǎn)A、E、C在同一直線(xiàn)上).已知李航的身高EF是1.6m,請(qǐng)你幫李航求出樓高AB.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線(xiàn)與
、
軸分別交于
、
兩點(diǎn).點(diǎn)
為線(xiàn)段
的中點(diǎn).過(guò)點(diǎn)
作直線(xiàn)
軸于點(diǎn)
.
(1)直接寫(xiě)出的坐標(biāo);
(2)如圖1,點(diǎn)是直線(xiàn)
上的動(dòng)點(diǎn),連接
、
,線(xiàn)段
在直線(xiàn)
上運(yùn)動(dòng),記為
,點(diǎn)
是
軸上的動(dòng)點(diǎn),連接點(diǎn)
、
,當(dāng)
取最大時(shí),求
的最小值;
(3)如圖2,在軸正半軸取點(diǎn)
,使得
,以
為直角邊在
軸右側(cè)作直角
,
,且
,作
的角平分線(xiàn)
,將
沿射線(xiàn)
方向平移,點(diǎn)
、
,
平移后的對(duì)應(yīng)點(diǎn)分別記作
、
、
,當(dāng)
的點(diǎn)
恰好落在射線(xiàn)
上時(shí),連接
,
,將
繞點(diǎn)
沿順時(shí)針?lè)较蛐D(zhuǎn)
后得
,在直線(xiàn)
上是否存在點(diǎn)
,使得
為等腰三角形?若存在,請(qǐng)直接寫(xiě)出點(diǎn)
的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】學(xué)校與圖書(shū)館在同一條筆直道路上,甲從學(xué)校去圖書(shū)館,乙從圖書(shū)館回學(xué)校,甲、乙兩人都勻速步行且同時(shí)出發(fā),乙先到達(dá)目的地.兩人之間的距離(米)與時(shí)間
(分鐘)之間的函數(shù)關(guān)系如圖所示.其中說(shuō)法正確的是( )
A.甲的速度是60米/分鐘B.乙的速度是80米/分鐘
C.點(diǎn)的坐標(biāo)為
D.線(xiàn)段
所表示的函數(shù)表達(dá)式為
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com