日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 23、如圖,在等腰直角三角形ABC和DEC中,∠BCA=∠BCE=90°,點(diǎn)E在邊AB上,ED與AC交于點(diǎn)F,連接AD.
          (1)求證:△BCE≌△ACD.
          (2)求證:AB⊥AD.
          分析:(1)根據(jù)∠BCE+∠ECA=∠ECA+∠ACD=90°,得出∠BCE=∠ACD,再利用兩邊且夾角相等得出三角形全等;
          (2)由(1)知,∠B=∠CAD,再得出∠CAD+∠CAE=90°.
          解答:(1)證明:由題意知∠BCE+∠ECA=∠ECA+∠ACD=90°,
          ∴∠BCE=∠ACD,
          又∵BC=AC,CE=CD,
          ∴△BCE≌△ACD.

          證明:(2)由(1)知,∠B=∠CAD,
          又∵∠B+∠CAE=90°,
          ∴∠CAD+∠CAE=90°,即∠DAE=90°,
          ∴AB⊥AD.
          點(diǎn)評(píng):此題主要考查了三角形全等證明方法以及等腰三角形的性質(zhì),熟練的應(yīng)用全等的證明定理是解決問題的關(guān)鍵.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          教材中第25章銳角的三角比,在這章的小結(jié)中有如下一段話:銳角三角比定量地描述了在直角三角形中邊角之間的聯(lián)系.在直角三角形中,一個(gè)銳角的大小與兩條邊長(zhǎng)的比值相互唯一確定,因此邊長(zhǎng)與角的大小之間可以相互轉(zhuǎn)化.
          類似的,可以在等腰三角形中建立邊角之間的聯(lián)系,我們定義:等腰三角形中底邊與腰的比叫做頂角的正對(duì)(sad).如圖,在△ABC中,AB=AC,頂角A的正對(duì)記作sadA,這時(shí)sad A=
          底邊
          =
          BC
          AB
          .容易知道一個(gè)角的大小與這個(gè)角的正對(duì)值也是相精英家教網(wǎng)互唯一確定的.
          根據(jù)上述對(duì)角的正對(duì)定義,解下列問題:
          (1)sad 60°的值為( B。
          A.
          1
          2
          ;B.1;C.
          3
          2
          ;D.2
          (2)對(duì)于0°<A<180°,∠A的正對(duì)值sad A的取值范圍是
           

          (3)已知sinα=
          3
          5
          ,其中α為銳角,試求sadα的值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          教材中第25章銳角的三角比,在這章的小結(jié)中有如下一段話:銳角三角比定量地描述了在直角三角形中邊角之間的聯(lián)系.在直角三角形中,一個(gè)銳角的大小與兩條邊長(zhǎng)的比值相互唯一確定,因此邊長(zhǎng)與角的大小之間可以相互轉(zhuǎn)化.

          類似的,可以在等腰三角形中建立邊角之間的聯(lián)系,我們定義:等腰三角形中底邊與腰的比叫做頂角的正對(duì)(sad).如圖,在△ABC中,AB=AC,頂角A的正對(duì)記作sadA,這時(shí)

          sad A=.容易知道一個(gè)角的大小與這個(gè)角的正對(duì)值也是相互唯一確定的.

          根據(jù)上述對(duì)角的正對(duì)定義,解下列問題:

          (1)sad 的值為(  ▼  )

           A.             B.1                  C.                  D.2

          (2)對(duì)于,∠A的正對(duì)值sad A的取值范圍是   ▼   .

          (3)已知,其中為銳角,試求sad的值.

           

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          教材中第25章銳角的三角比,在這章的小結(jié)中有如下一段話:銳角三角比定量地描述了在直角三角形中邊角之間的聯(lián)系.在直角三角形中,一個(gè)銳角的大小與兩條邊長(zhǎng)的比值相互唯一確定,因此邊長(zhǎng)與角的大小之間可以相互轉(zhuǎn)化.
          類似的,可以在等腰三角形中建立邊角之間的聯(lián)系,我們定義:等腰三角形中底邊與腰的比叫做頂角的正對(duì)(sad).如圖,在△ABC中,AB=AC,頂角A的正對(duì)記作sadA,這時(shí)
          sad A=.容易知道一個(gè)角的大小與這個(gè)角的正對(duì)值也是相互唯一確定的.
          根據(jù)上述對(duì)角的正對(duì)定義,解下列問題:

          (1)sad 的值為( ▼ )
          A.B.1 C.D.2
          (2)對(duì)于,∠A的正對(duì)值sad A的取值范圍是  ▼   .
          (3)已知,其中為銳角,試求sad的值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:2011屆北京市昌平區(qū)初三上學(xué)期期末考試數(shù)學(xué)卷 題型:解答題

          教材中第25章銳角的三角比,在這章的小結(jié)中有如下一段話:銳角三角比定量地描述了在直角三角形中邊角之間的聯(lián)系.在直角三角形中,一個(gè)銳角的大小與兩條邊長(zhǎng)的比值相互唯一確定,因此邊長(zhǎng)與角的大小之間可以相互轉(zhuǎn)化.
          類似的,可以在等腰三角形中建立邊角之間的聯(lián)系,我們定義:等腰三角形中底邊與腰的比叫做頂角的正對(duì)(sad).如圖,在△ABC中,AB=AC,頂角A的正對(duì)記作sadA,這時(shí)
          sad A=.容易知道一個(gè)角的大小與這個(gè)角的正對(duì)值也是相互唯一確定的.
          根據(jù)上述對(duì)角的正對(duì)定義,解下列問題:

          (1)sad 的值為( ▼ )

          A.B.1 C.D.2
          (2)對(duì)于,∠A的正對(duì)值sad A的取值范圍是  ▼   .
          (3)已知,其中為銳角,試求sad的值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:2010-2011學(xué)年北京市昌平區(qū)初三上學(xué)期期末考試數(shù)學(xué)卷 題型:解答題

          教材中第25章銳角的三角比,在這章的小結(jié)中有如下一段話:銳角三角比定量地描述了在直角三角形中邊角之間的聯(lián)系.在直角三角形中,一個(gè)銳角的大小與兩條邊長(zhǎng)的比值相互唯一確定,因此邊長(zhǎng)與角的大小之間可以相互轉(zhuǎn)化.

          類似的,可以在等腰三角形中建立邊角之間的聯(lián)系,我們定義:等腰三角形中底邊與腰的比叫做頂角的正對(duì)(sad).如圖,在△ABC中,AB=AC,頂角A的正對(duì)記作sadA,這時(shí)

          sad A=.容易知道一個(gè)角的大小與這個(gè)角的正對(duì)值也是相互唯一確定的.

          根據(jù)上述對(duì)角的正對(duì)定義,解下列問題:

          (1)sad 的值為(  ▼  )

           A.             B. 1                  C.                  D. 2

          (2)對(duì)于,∠A的正對(duì)值sad A的取值范圍是   ▼   .

          (3)已知,其中為銳角,試求sad的值.

           

          查看答案和解析>>

          同步練習(xí)冊(cè)答案