日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (2002•天津)已知二次函數(shù)y1=x2-2x-3.
          (1)結(jié)合函數(shù)y1的圖象,確定當(dāng)x取什么值時,y1>0,y1=0,y1<0;
          (2)根據(jù)(1)的結(jié)論,確定函數(shù)y2=(|y1|-y1)關(guān)于x的解析式;
          (3)若一次函數(shù)y=kx+b(k≠0)的圖象與函數(shù)y2的圖象交于三個不同的點,試確定實數(shù)k與b應(yīng)滿足的條件?
          【答案】分析:(1)由函數(shù)圖象可以很容易的得出y1>0,y1=0,y1<0時x所取的值;
          (2)由圖象可以看出,當(dāng)x≤-1或x≥3時,|y1|=y1;當(dāng)-1<x<3時,|y1|=-y1,則可分段確定出y2關(guān)于x的解析式;
          (3)若一次函數(shù)y=kx+b的圖象與函數(shù)y2的圖象有三個交點,只需一次函數(shù)的圖象與函數(shù)y2的圖象在-1<x<3的范圍內(nèi)有兩個交點即可.
          解答:解:(1)畫出函數(shù)y1=x2-2x-3的圖象,
          利用它的圖象可知:當(dāng)x<-1或x>3時,y1>0;
          當(dāng)x=-1或x=3時,y1=0;
          當(dāng)-1<x<3時,y1<0;

          (2)根據(jù)(I)的結(jié)論,可得
          當(dāng)x≤-1或x≥3時,|y1|=y1
          于是函數(shù)y2=(|y1|-y1)=(y1-y1)=0,
          當(dāng)-1<x<3時,|y1|=-y1,
          于是函數(shù)y2=(|y1|-y1)=(-y1-y1)=-y1
          ∴函數(shù)y2關(guān)于x的解析式為

          (3)由題設(shè)條件,k≠0時,一次函數(shù)y=kx+b的圖象與函數(shù)y2的圖象有三個交點,
          只需一次函數(shù)的圖象與函數(shù)y2的圖象在-1<x<3的范圍內(nèi)有兩個交點,
          即方程組有兩個不等的實數(shù)根,
          消去y,得:
          x2+(k-2)x+(b-3)=0.
          即只需二次函數(shù)y=x2+(k-2)x+(b-3)的圖象與x軸的兩個交點在-1<x<3范圍
          內(nèi).此時,應(yīng)同時滿足以下三個條件:
          ①判別式△=(k-2)2-4(b-3)>0.
          即b<+3,
          ②二次函數(shù)y=x2+(k-2)x+(b-3)圖象的對稱軸為x=滿足-1<-<3
          得-4<k<4.
          又k≠0,
          ∴-4<k<0或0<k<4.
          ③當(dāng)x=-1與x=3時,y=x2+(k-2)x+(b-3)的函數(shù)值均應(yīng)大于0,

          解得
          ∴當(dāng)k>0時,有b>k;
          當(dāng)k<0時,有b>-3k.
          綜上,由(1)(2)(3)知,一次函數(shù)y=kx+b(k≠0)的圖象與函數(shù)y2的圖象有三個不
          同的交點時,應(yīng)滿足
          點評:本題考查了由函數(shù)圖象確定函數(shù)解析式以及直線與拋物線的交點問題,體現(xiàn)了數(shù)形結(jié)合的思想.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源:2002年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(04)(解析版) 題型:解答題

          (2002•天津)已知二次函數(shù)y1=x2-2x-3.
          (1)結(jié)合函數(shù)y1的圖象,確定當(dāng)x取什么值時,y1>0,y1=0,y1<0;
          (2)根據(jù)(1)的結(jié)論,確定函數(shù)y2=(|y1|-y1)關(guān)于x的解析式;
          (3)若一次函數(shù)y=kx+b(k≠0)的圖象與函數(shù)y2的圖象交于三個不同的點,試確定實數(shù)k與b應(yīng)滿足的條件?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:2002年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(03)(解析版) 題型:解答題

          (2002•天津)已知拋物線y=2x2-3x+m(m為常數(shù))與x軸交于A、B兩點,且線段AB的長為
          (1)求m的值;
          (2)若該拋物線的頂點為P,求△ABP的面積.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:2002年全國中考數(shù)學(xué)試題匯編《函數(shù)基礎(chǔ)知識》(02)(解析版) 題型:解答題

          (2002•天津)已知二次函數(shù)y1=x2-2x-3.
          (1)結(jié)合函數(shù)y1的圖象,確定當(dāng)x取什么值時,y1>0,y1=0,y1<0;
          (2)根據(jù)(1)的結(jié)論,確定函數(shù)y2=(|y1|-y1)關(guān)于x的解析式;
          (3)若一次函數(shù)y=kx+b(k≠0)的圖象與函數(shù)y2的圖象交于三個不同的點,試確定實數(shù)k與b應(yīng)滿足的條件?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:2002年天津市中考數(shù)學(xué)試卷(解析版) 題型:解答題

          (2002•天津)已知拋物線y=2x2-3x+m(m為常數(shù))與x軸交于A、B兩點,且線段AB的長為
          (1)求m的值;
          (2)若該拋物線的頂點為P,求△ABP的面積.

          查看答案和解析>>

          同步練習(xí)冊答案