日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,將一把直角三角板的直角頂點放置于原點O,兩直角邊與拋物線交于M、N兩點,設(shè)M、N的橫坐標(biāo)分別為m、n(m﹥0,n﹤0);請解答下列問題:(1)當(dāng)m=1時,n=__   ; 當(dāng)m=2時,n=__  

          試猜想m與n滿足的關(guān)系,并證明你猜想的結(jié)論。

          (2)連接M、N,若△OMN的面積為S,求S關(guān)于m的函數(shù)關(guān)系式。 

          (3)當(dāng)三角板繞點O旋轉(zhuǎn)到某一位置時,恰好使得∠MNO=30°,此時過M作MA⊥x軸,垂足為A,求出△OMA的面積。

          (4)當(dāng)m=2時,拋物線上是否存在一點P使M、N、O、P四點構(gòu)成梯形,若存在,直接寫出所有滿足條件的點P的坐標(biāo);若不存在,說明理由。

          (1)當(dāng)m=1時,n= -1;(1分) 當(dāng)m=2時,n=;(1分)

           m與n滿足的關(guān)系:    (1分)

          證明:作NB⊥x軸,垂足為B,則△OMA∽△NOB;∵M(jìn)() N  ∴

          整理得:    (1分)

          (2) S=====     (2分)

          (注:還有其他方法)

          (3)∵∠MNO=30°,∴   又∵△OMA∽△NOB,∴     (1分)

          代入得                (1分)

          ∴△OMA的面積===        (1分)

          (4)        (3分)

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          (2012•鎮(zhèn)江模擬)如圖,將一把直角三角板的直角頂點放置于原點O,兩直角邊與拋物線y=x2交于M、N兩點,設(shè)M、N的橫坐標(biāo)分別為m、n(m>0,n<0);請解答下列問題:
          (1)當(dāng)m=1時,n=
          -1
          -1
          ;當(dāng)m=2時,n=
          -
          1
          2
          -
          1
          2
          .試猜想m與n滿足的關(guān)系,并證明你猜想的結(jié)論.
          (2)連接M、N,若△OMN的面積為S,求S關(guān)于m的函數(shù)關(guān)系式.
          (3)當(dāng)三角板繞點O旋轉(zhuǎn)到某一位置時,恰好使得∠MNO=30°,此時過M作MA⊥x軸,垂足為A,求出△OMA的面積.
          (4)當(dāng)m=2時,拋物線上是否存在一點P使M、N、O、P四點構(gòu)成梯形?若存在,直接寫出所有滿足條件的點P的坐標(biāo);若不存在,說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖,將一把直角三角板的直角頂點置于平面直角坐標(biāo)系的原點O,兩直角邊與拋物線y=ax2(a<0)交于A、B兩點,請解答以下問題:

          (1)若測得OA=OB=2
          2
          (如圖1),求a的值;
          (2)對同一條拋物線,將三角板繞點O旋轉(zhuǎn)到如圖2所示位置時,過B作BF⊥x軸于點F,測得OF=1,寫出此時點B的坐標(biāo),并求點A的橫坐標(biāo);
          (3)對該拋物線,將三角板繞點O旋轉(zhuǎn)任意角度時,交點A、B的連線段總經(jīng)過一個固定的點,試求出該點的坐標(biāo).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:解答題

          如圖,將一把直角三角板的直角頂點置于平面直角坐標(biāo)系的原點O,兩直角邊與拋物線y=ax2(a<0)交于A、B兩點,請解答以下問題:

          (1)若測得OA=OB=2數(shù)學(xué)公式(如圖1),求a的值;
          (2)對同一條拋物線,將三角板繞點O旋轉(zhuǎn)到如圖2所示位置時,過B作BF⊥x軸于點F,測得OF=1,寫出此時點B的坐標(biāo),并求點A的橫坐標(biāo);
          (3)對該拋物線,將三角板繞點O旋轉(zhuǎn)任意角度時,交點A、B的連線段總經(jīng)過一個固定的點,試求出該點的坐標(biāo).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖,將一把直角三角板的直角頂點放置于原點O,兩直角邊與拋物線交于M、N兩點,設(shè)M、N的橫坐標(biāo)分別為m、n(m﹥0,n﹤0);請解答下列問題:
          【小題1】當(dāng)m=1時,n=__ ▲ ; 當(dāng)m=2時,n=__ ▲ 試猜想m與n滿足的關(guān)系,并證明你猜想的結(jié)論。
          【小題2】連接M、N,若△OMN的面積為S,求S關(guān)于m的函數(shù)關(guān)系式。
          【小題3】當(dāng)三角板繞點O旋轉(zhuǎn)到某一位置時,恰好使得∠MNO=30°,此時過M作MA⊥x軸,垂足為A,求出△OMA的面積
          【小題4】當(dāng)m=2時,拋物線上是否存在一點P使M、N、O、P四點構(gòu)成梯形,若存在,直接寫出所有滿足條件的點P的坐標(biāo);若不存在,說明理由。

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:2012年江西省贛州市定南縣三中片區(qū)九年級數(shù)學(xué)全能競賽試卷(解析版) 題型:解答題

          如圖,將一把直角三角板的直角頂點置于平面直角坐標(biāo)系的原點O,兩直角邊與拋物線y=ax2(a<0)交于A、B兩點,請解答以下問題:

          (1)若測得OA=OB=2(如圖1),求a的值;
          (2)對同一條拋物線,將三角板繞點O旋轉(zhuǎn)到如圖2所示位置時,過B作BF⊥x軸于點F,測得OF=1,寫出此時點B的坐標(biāo),并求點A的橫坐標(biāo);
          (3)對該拋物線,將三角板繞點O旋轉(zhuǎn)任意角度時,交點A、B的連線段總經(jīng)過一個固定的點,試求出該點的坐標(biāo).

          查看答案和解析>>

          同步練習(xí)冊答案