日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,已知點(diǎn)A(-2,4)和點(diǎn)B(1,0)都在拋物線上.

          (1)求、;

          (2)向右平移上述拋物線,記平移后點(diǎn)A的對應(yīng)點(diǎn)為,點(diǎn)B的對應(yīng)點(diǎn)為,若四邊形為菱形,求平移后拋物線的表達(dá)式;

          (3)記平移后拋物線的對稱軸與直線的交點(diǎn)為C,試在軸上找一個(gè)點(diǎn)D,使得以點(diǎn)、C、D為頂點(diǎn)的三角形與△ABC相似.

          【答案】(1);

          (2);.

          (3)D點(diǎn)坐標(biāo)為:D(3,0)或(,0)

          【解析】(1)已知了拋物線圖象上A、B兩點(diǎn)的坐標(biāo),將它們代入拋物線的解析式中,即可求得m、n的值;(2)根據(jù)A、B的坐標(biāo),易求得AB的長;根據(jù)平移的性質(zhì)知:四邊形AA′B′B一定為平行四邊形,若四邊形AA′B′B為菱形,那么必須滿足AB=BB′,由此可確定平移的距離,根據(jù)“左加右減”的平移規(guī)律即可求得平移后的拋物線解析式;(3)易求得直線AB′的解析式,聯(lián)立平移后的拋物線對稱軸,可得到C點(diǎn)的坐標(biāo),進(jìn)而可求出AB、BC、AC、B′C的長,在(2)題中已經(jīng)證得AB=BB′,那么∠BAC=∠BB′C,即A、B′對應(yīng),若以點(diǎn)B′、C、D為頂點(diǎn)的三角形與△ABC相似,可分兩種情況考慮:①∠B′CD=∠ABC,此時(shí)△B′CD∽△ABC,②∠B′DC=∠ABC,此時(shí)△B′DC∽△ABC,根據(jù)上述兩種不同的相似三角形所得不同的比例線段,即可求得不同的BD長,進(jìn)而可求得D點(diǎn)的坐標(biāo).

          解:(1)由于拋物線經(jīng)過點(diǎn)A(-2,4)和點(diǎn)B(1,0),

          則有: ,解得.

          2)由(1)得:,

          A-2,4)、B1,0),根據(jù)勾股定理可得

          若四邊形AA′B′B為菱形,則AB=BB′=5,即B′60.

          故拋物線需向右平移5個(gè)單位,即:.

          (3)依照題意畫出圖形,如圖所示,

          由(2)得:平移后拋物線的對稱軸為:x=4,

          ∵A(2,4),B′(6,0),∴直線AB′:.

          當(dāng)x=4時(shí),y=1,故C(4,1). ∴B′C=,AC=3,BC=.

          由(2)知:AB=BB′=5,即∠BAC=∠BB′C.

          若以點(diǎn)B′、C、D為頂點(diǎn)的三角形與△ABC相似,

          則:①∠B′CD=∠ABC,則△B′CD∽△ABC,可得:,即,∴B′D=3,此時(shí)D(3,0);

          ②∠B′DC=∠ABC,則△B′DC∽△ABC,可得:,∴,此時(shí)D(,0).

          綜上所述,存在符合條件的D點(diǎn),且坐標(biāo)為:D(3,0)或(,0).

          “點(diǎn)睛”本題考查了二次函數(shù)綜合題、平移問題、曲線上點(diǎn)的坐標(biāo)與方程的關(guān)系、勾股定理、菱形的性質(zhì)、等腰三角形的性質(zhì)、相似三角形的判定和性質(zhì);本題主要考查了二次函數(shù)的應(yīng)用問題,在解題時(shí)要根據(jù)二次函數(shù)的圖象和性質(zhì)進(jìn)行綜合分析是本題的關(guān)鍵.要注意分類思想的應(yīng)用.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】平行四邊形ABCD中,對角線AC、BD交于點(diǎn)O , 點(diǎn)EBC的中點(diǎn)OE=3cm , 則AB的長為( 。
          A.3cm
          B.6cm
          C.9cm
          D.12cm

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】閱讀下列材料,然后解答后面的問題. 我們知道方程2x+3y=12有無數(shù)組解,但在實(shí)際生活中我們往往只需要求出其正整數(shù)解.例:由2x+3y=12,得 ,(x、y為正整數(shù))∴ 則有0<x<6.又 為正整數(shù),則 為正整數(shù).
          由2與3互質(zhì),可知:x為3的倍數(shù),從而x=3,代入
          ∴2x+3y=12的正整數(shù)解為
          問題:
          (1)請你寫出方程2x+y=5的一組正整數(shù)解:
          (2)若 為自然數(shù),則滿足條件的x值有個(gè);
          A.2
          B.3
          C.4
          D.5
          (3)七年級(jí)某班為了獎(jiǎng)勵(lì)學(xué)習(xí)進(jìn)步的學(xué)生,購買了單價(jià)為3元的筆記本與單價(jià)為5元的鋼筆兩種獎(jiǎng)品,共花費(fèi)35元,問有幾種購買方案?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】(3x2y﹣2x+1)(﹣2xy)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】13位同學(xué)參加學(xué)校組織的才藝表演比賽,已知他們所得的分?jǐn)?shù)互不相同,共設(shè)7個(gè)獲獎(jiǎng)名額,某同學(xué)知道自己的比賽分?jǐn)?shù)后,要判斷自己能否獲獎(jiǎng),在這13名同學(xué)成績的統(tǒng)計(jì)量中只需知道一個(gè)量,它是____.(眾數(shù)”“方差”“中位數(shù)平均數(shù)”)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】下列計(jì)算中,正確的是(  ).
          A.32=
          B. =﹣3
          C.m6÷m2=m3
          D.(a﹣b)2=a2﹣b2

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】關(guān)于x的一元二次方程2x2-4x+m-1=0有兩個(gè)相等的實(shí)數(shù)根,則m的值為________

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】已知關(guān)于x的方程 + = 恰有一個(gè)實(shí)根,則滿足條件的實(shí)數(shù)a的值的個(gè)數(shù)為( ).
          A.1
          B.2
          C.3
          D.4

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】計(jì)算(2m+1)(4m2+1)(2m-1)=_____.

          查看答案和解析>>

          同步練習(xí)冊答案