日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖1,在平面直角坐標(biāo)系中,△ABC的頂點(diǎn)AC分別是直線y=x+4與坐標(biāo)軸的交點(diǎn),點(diǎn)B的坐標(biāo)為(﹣20),點(diǎn)D是邊AC上的一點(diǎn),DEBC于點(diǎn)E,點(diǎn)F在邊AB上,且D,F兩點(diǎn)關(guān)于y軸上的某點(diǎn)成中心對(duì)稱,連結(jié)DFEF.設(shè)點(diǎn)D的橫坐標(biāo)為m,EF2l,請(qǐng)?zhí)骄浚?/span>

          ①線段EF長(zhǎng)度是否有最小值.

          ②△BEF能否成為直角三角形.

          小明嘗試用觀察﹣猜想﹣驗(yàn)證﹣應(yīng)用的方法進(jìn)行探究,請(qǐng)你一起來解決問題.

          1)小明利用幾何畫板軟件進(jìn)行觀察,測(cè)量,得到lm變化的一組對(duì)應(yīng)值,并在平面直角坐標(biāo)系中以各對(duì)應(yīng)值為坐標(biāo)描點(diǎn)(如圖2).請(qǐng)你在圖2中連線,觀察圖象特征并猜想lm可能滿足的函數(shù)類別.

          2)小明結(jié)合圖1,發(fā)現(xiàn)應(yīng)用三角形和函數(shù)知識(shí)能驗(yàn)證(1)中的猜想,請(qǐng)你求出l關(guān)于m的函數(shù)表達(dá)式及自變量的取值范圍,并求出線段EF長(zhǎng)度的最小值.

          3)小明通過觀察,推理,發(fā)現(xiàn)△BEF能成為直角三角形,請(qǐng)你求出當(dāng)△BEF為直角三角形時(shí)m的值.

          【答案】1)連線見解析,二次函數(shù);(2;(3m=0m=

          【解析】

          1)根據(jù)描點(diǎn)法畫圖即可;

          2)過點(diǎn)F,D分別作FG,DH垂直于y軸,垂足分別為G,H,證明RtFGKRtDHKAAS),由全等三角形的性質(zhì)得出FG=DH,可求出F(﹣m,﹣2m+4),根據(jù)勾股定理得出l=EF2=8m216m+16=8m12+8,由二次函數(shù)的性質(zhì)可得出答案;

          3)分三種不同情況,根據(jù)直角三角形的性質(zhì)得出m的方程,解方程求出m的值,則可求出答案.

          解:(1)用描點(diǎn)法畫出圖形如圖1,由圖象可知函數(shù)類別為二次函數(shù).

          2)如圖2,過點(diǎn)F,D分別作FG,DH垂直于y軸,垂足分別為GH,

          則∠FGK=DHK=90°,

          FDy軸于點(diǎn)K

          D點(diǎn)與F點(diǎn)關(guān)于y軸上的K點(diǎn)成中心對(duì)稱,

          KF=KD

          ∵∠FKG=DKH,

          RtFGKRtDHKAAS),

          FG=DH

          ∵直線AC的解析式為y=x+4,

          x=0時(shí),y=4

          A04),

          又∵B(﹣20),

          設(shè)直線AB的解析式為y=kx+b

          ,

          解得,

          ∴直線AB的解析式為y=2x+4,

          過點(diǎn)FFRx軸于點(diǎn)R,

          D點(diǎn)的橫坐標(biāo)為m,

          F(﹣m,﹣2m+4),

          ER=2m,FR=2m+4,

          EF2=FR2+ER2,

          l=EF2=8m216m+16=8m12+8

          令﹣+4=0,得x=

          0≤m

          ∴當(dāng)m=1時(shí),l的最小值為8

          EF的最小值為2

          3)①∠FBE為定角,不可能為直角.

          ②∠BEF=90°時(shí),E點(diǎn)與O點(diǎn)重合,D點(diǎn)與A點(diǎn),F點(diǎn)重合,此時(shí)m=0

          ③如圖3,∠BFE=90°時(shí),有BF2+EF2=BE2

          由(2)得EF2=8m216m+16,

          又∵BR=m+2FR=2m+4,

          BF2=BR2+FR2=(﹣m+22+(﹣2m+42=5m220m+20

          又∵BE2=m+22,

          ∴(5m220m+8+8m216m+162=m+22

          化簡(jiǎn)得,3m210m+8=0

          解得m1=,m2=2(不合題意,舍去),

          m=

          綜合以上可得,當(dāng)△BEF為直角三角形時(shí),m=0m=

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,ORtABC直角邊AC上一點(diǎn),以OC為半徑作⊙O與斜邊AB相切于點(diǎn)D,交OA于點(diǎn)E,已知AC=3,則圖中陰影部分的面積是__________

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】根據(jù)市衛(wèi)生防疫部門的要求,游泳池必須定期換水后才能對(duì)外開放.在換水時(shí)需要經(jīng)“排水一清冼一灌水”的過程.某游泳館從早上開始對(duì)游泳池進(jìn)行換水,已知該游泳池的排水速度是灌水速度的倍,其中游泳池內(nèi)剩余的水量與換水時(shí)間上之間的函數(shù)圖象如圖所示,根據(jù)圖象解答下列問題:

          1)該游泳池清洗需要    小時(shí).

          2)求排水過程中的之間的函數(shù)關(guān)系式,并寫出自變量的取值范圍.

          3)若該游泳館在換水結(jié)束分鐘后才能對(duì)外開放,判斷游泳愛好者小致能否在中午進(jìn)入該游泳館游泳,并說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在中,,以頂點(diǎn)為圓心,適當(dāng)長(zhǎng)為半徑畫弧,分別交邊于點(diǎn);再分別以為圓心,以大于為半徑作弧,兩弧在內(nèi)交于點(diǎn);作射線交邊于點(diǎn),則的面積為( )

          A.B.C.D.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,將一把矩形直尺ABCD和一塊含30°角的三角板EFG擺放在平面直角坐標(biāo)系中,ABx軸上,點(diǎn)G與點(diǎn)A重合,點(diǎn)FAD上,三角板的直角邊EFBC于點(diǎn)M,反比例函數(shù)y=x0)的圖象恰好經(jīng)過點(diǎn)F,M.若直尺的寬CD=3,三角板的斜邊FG=,則k=_____

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】為了解市民對(duì)“垃圾分類知識(shí)”的知曉程度,某數(shù)學(xué)學(xué)習(xí)興趣小組對(duì)市民進(jìn)行 隨機(jī)抽樣的問卷調(diào)查,調(diào)查結(jié)果分為“A.非常了解”、“B.了解”、“C.基本了解”、“D.不太了解”四個(gè)等級(jí)進(jìn)行統(tǒng)計(jì),并將統(tǒng)計(jì)結(jié)果繪制成如下兩幅不完整的統(tǒng)計(jì)圖(圖1,圖2), 請(qǐng)根據(jù)圖中的信息解答下列問題.

          1)這次調(diào)查的市民人數(shù)為________人,圖2中,_________;

          2)圖1中的條形統(tǒng)計(jì)圖中B等級(jí)的人數(shù);

          3)在圖2中的扇形統(tǒng)計(jì)圖中,求“C.基本了解”所在扇形的圓心角度數(shù);

          4)據(jù)統(tǒng)計(jì),2018年該市約有市民500萬人,那么根據(jù)抽樣調(diào)查的結(jié)果,可估計(jì)對(duì)“垃圾分類知識(shí)”的知曉程度為“A.非常了解”的市民約有多少萬人?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】我們把有一組鄰邊相等,一組對(duì)邊平行但不相等的四邊形稱作“準(zhǔn)菱形”.

          1)證明“準(zhǔn)菱形”性質(zhì):“準(zhǔn)菱形”的一條對(duì)角線平分一個(gè)內(nèi)角.

          (要求:根據(jù)圖1寫出已知,求證,證明)

          已知:

          求證:

          證明:

          2)已知.在△ABC中,∠A=90°,AB=3,AC=4.若點(diǎn)D,E分別在邊BCAC上,且四邊形ABDE為“準(zhǔn)菱形”.請(qǐng)?jiān)谙铝薪o出的△ABC中,作出滿足條件的所有“準(zhǔn)菱形”ABDE,并寫出相應(yīng)DE的長(zhǎng).(所給△ABC不一定都用,不夠可添)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在平面直角坐標(biāo)系中,將一塊腰長(zhǎng)為的等腰直角三角板ABC放在第二象限,且斜靠在兩坐標(biāo)軸上,直角頂點(diǎn)C的坐標(biāo)為(1,0),點(diǎn)B在拋物線y=ax2+ax2上.

          1)點(diǎn)A的坐標(biāo)為 ,點(diǎn)B的坐標(biāo)為 ;拋物線的解析式為 ;

          2)設(shè)拋物線的頂點(diǎn)為D,求△DBC的面積;

          3)在拋物線上是否還存在點(diǎn)P(點(diǎn)B除外),使△ACP仍然是以AC為直角邊的等腰直角三角形?若存在,請(qǐng)直接寫出所有點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】參照學(xué)習(xí)函數(shù)的過程方法,探究函數(shù)的圖像與性質(zhì),因?yàn)?/span>,即,所以我們對(duì)比函數(shù)來探究列表:

          -4

          -3

          -2

          -1

          1

          2

          3

          4

          1

          2

          4

          -4

          -2

          -1

          <>

          2

          3

          5

          -3

          -2

          0

          描點(diǎn):在平面直角坐標(biāo)系中以自變量的取值為橫坐標(biāo),以相應(yīng)的函數(shù)值為縱坐標(biāo),描出相應(yīng)的點(diǎn)如圖所示:

          1)請(qǐng)把軸左邊各點(diǎn)和右邊各點(diǎn)分別用一條光滑曲線,順次連接起來;

          2)觀察圖象并分析表格,回答下列問題:

          ①當(dāng)時(shí),的增大而______;(“增大”或“減小”)

          的圖象是由的圖象向______平移______個(gè)單位而得到的;

          ③圖象關(guān)于點(diǎn)______中心對(duì)稱.(填點(diǎn)的坐標(biāo))

          3)函數(shù)與直線交于點(diǎn),,求的面積.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案