日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,在直角坐標系中,⊙M外接于矩形OABC,AB=3,BC=4,點A在y軸精英家教網(wǎng)上,點C在x軸上.
          (1)過點A作⊙M的切線交x軸于點P,求直線PA的解析式;
          (2)點F為線段PC上的一點,連接AF,若AF將四邊形ABCP面積平分,求點F的坐標;
          (3)如果點E為PA上的一個動點(不運動到點P,點A),直線EF將四邊形PABC的周長平分,設(shè)點E縱坐標為t,△PEF的面積為S,求S與t的函數(shù)關(guān)系式,并求自變量t的取值范圍;直線EF能否將四邊形PABC的周長和面積同時平分?若存在,請求出直線EF的解析式;若不存在,請說明理由.
          分析:(1)連接AC,則AC⊥AP,先求出PO,再求出點P坐標,就可得出PA的解析式;
          (2)先求出四邊形PABC的面積,再設(shè)PF,求出PF的長度,就可得出點F的坐標;
          (3)過E作EN⊥x軸于N,由三角形相似得出各線段比,然后求出PE,PF,再得出t的取值范圍,然后用t表示S,最后由△得出EF,不存在.
          解答:精英家教網(wǎng)解:(1)連接AC,則AC⊥AP,PO=
          16
          3
          ,
          ∴P(
          16
          3
          ,0),直線PA的解析式為y=-
          3
          4
          x+4
          ;

          (2)SPABC=
          1
          2
          (3+
          25
          3
          )×4=
          68
          3
          ,設(shè)PF=a,
          1
          2
          a×4=
          1
          2
          ×
          68
          3
          ,a=
          17
          3
          ,
          ∴F(-
          1
          3
          ,0);

          (3)過E作EN⊥x軸于N,
          EN
          AO
          =
          PE
          PA
          ,
          t
          4
          =
          PE
          20
          3
          ,PE=
          5
          3
          t
          ,
          四邊形PABC的周長是22,直線EF將周長平分,
          PE+PF=11,PF=11-
          5
          3
          t
          ,
          S=
          1
          2
          PF•EN=-
          5
          6
          t2+
          11
          2
          t

          t>0
          t<4
          0<11-
          5
          3
          t<
          25
          3
          解得
          8
          5
          <t<4
          ,
          S=-
          5
          6
          t2+
          11
          2
          t=
          34
          3
          ,化簡得5t2-33t+68=0,
          △=1089-1360<0,
          所以這樣的EF不存在.
          點評:本題涉及一次函數(shù)的綜合性質(zhì),難度中上.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          18、如圖,在直角坐標系中,已知點A(-3,0),B(0,4),對△OAB連續(xù)作旋轉(zhuǎn)變換,依次得到三角形①、②、③、④…,則三角形⑦的直角頂點的坐標為
          (24,0)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖,在直角坐標系中,點P的坐標為(3,4),將OP繞原點O逆時針旋轉(zhuǎn)90°得到線段OP′.
          (1)在圖中畫出線段OP′;
          (2)求P′的坐標和
          PP′
          的長度.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖,在直角坐標系中,O為原點.反比例函數(shù)y=
          6
          x
          的圖象經(jīng)過第一象限的點A,點A的縱坐標是橫坐標的
          3
          2
          倍.
          (1)求點A的坐標;
          (2)如果經(jīng)過點A的一次函數(shù)圖象與x軸的負半軸交于點B,AC⊥x軸于點C,若△ABC的面積為9,求這個一次函數(shù)的解析式.
          (3)點D在反比例函數(shù)y=
          6
          x
          的圖象上,且點D在直線AC的右側(cè),作DE⊥x軸于點E,當(dāng)△ABC與△CDE相似時,求點D的坐標.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖,在直角坐標系中,△ABC的三個頂點的坐標分別為A(-6,0),B(-4,6),C(0,2).畫出△ABC的兩個位似圖形△A1B1C1,△A2B2C2,同時滿足下列兩個條件:
          (1)以原點O為位似中心;
          (2)△A1B1C1,△A2B2C2與△ABC的面積比都是1:4.(作出圖形,保留痕跡,標上相應(yīng)字母)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖,在直角坐標系中,已知點A(-4,0),B(0,3),對△OAB連續(xù)作旋轉(zhuǎn)變換,依次得到三角形(1),三角形(2),三角形(3),三角形(4),…,

          (1)△AOB的面積是
          6
          6
          ;
          (2)三角形(2013)的直角頂點的坐標是
          (8052,0)
          (8052,0)

          查看答案和解析>>

          同步練習(xí)冊答案