日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,在平面直角坐標(biāo)系中,直線ABx軸、y軸分別交于點(diǎn)A(3,0)B(0,4),點(diǎn)Dy軸的負(fù)半軸上,若將DAB沿直線AD折疊,點(diǎn)B恰好落在x軸正半軸上的點(diǎn)C處.

          1)求直線AB的表達(dá)式;

          2)求點(diǎn)C和點(diǎn)D的坐標(biāo);

          3y軸的正半軸上是否存在一點(diǎn)P,使得SPABSOCD?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

          【答案】1y=﹣x+4;(2C(8,0)D(0,-6);(3)存在,P(0,8)

          【解析】

          1)將點(diǎn)AB的坐標(biāo)代入一次函數(shù)表達(dá)式:ykx+b,即可求解;

          2)由題意得:ADAB5,故點(diǎn)D80),設(shè)點(diǎn)C的坐標(biāo)為:(0,m),而CDBC,即4m,再解答即可;

          3)設(shè)點(diǎn)P0n),SOCD×6×86SABPBP×xA|4m|×36,即可求解.

          解:(1)設(shè)直線AB的表達(dá)式為:ykx+b

          將點(diǎn)A、B的坐標(biāo)代入一次函數(shù)表達(dá)式:ykx+b

          得:,解得:

          故直線AB的表達(dá)式為:y=﹣x+4;

          2)∵AB=

          由折疊可得:ACAB5,故點(diǎn)C8,0),

          設(shè)點(diǎn)D的坐標(biāo)為:(0m),而CDBC,

          4m,解得:m=﹣6,

          故點(diǎn)D0,﹣6);

          3)設(shè)點(diǎn)P0,n),

          SOCD×6×86

          SABPBP×xA|4n|×36,

          解得:n80

          又∵點(diǎn)Py軸的正半軸,

          n=8,

          P08).

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在ABC中,∠BAC=108°,EF、MN分別是AB、AC的垂直平分線,點(diǎn)E、NBC上,則∠EAN等于( )

          A. 72°B. 54°C. 36°D. 18°

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】在△ABC中,∠A=60°,BD,CE是△ABC的兩條角平分線,且BD,CE交于點(diǎn)F,如圖所示,用等式表示BE,BC,CD這三條線段之間的數(shù)量關(guān)系,并證明你的結(jié)論;

          曉東通過觀察,實(shí)驗(yàn),提出猜想:BE+CD=BC,他發(fā)現(xiàn)先在BC上截取BM,使BM=BE,連接FM,再利用三角形全等的判定和性質(zhì)證明CM=CD即可.

          1)下面是小東證明該猜想的部分思路,請(qǐng)補(bǔ)充完整;

          ①在BC上截取BM,使BM=BE,連接FM,則可以證明△BEF______全等,判定它們?nèi)鹊囊罁?jù)是______

          ②由∠A=60°,BD,CE是△ABC的兩條角平分線,可以得出∠EFB=______°;

          2)請(qǐng)直接利用①,②已得到的結(jié)論,完成證明猜想BE+CD=BC的過程.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】我國南宋著名數(shù)學(xué)家秦九韶的著作《數(shù)書九章》里記載有這樣一道題:問有沙田一塊,有三斜,其中小斜五里,中斜十二里,大斜十三里,欲知為田幾何?這道題講的是:有一塊三角形沙田,三條邊長分別為5里,12里,13里,問這塊沙田面積有多大?題中是我國市制長度單位,1=500米,則該沙田的面積為( 。

          A. 7.5平方千米 B. 15平方千米 C. 75平方千米 D. 750平方千米

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在△ABC中,ABACADBE是高,它們相交于點(diǎn)H,且AEBE

          求證:AH2BD

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】在數(shù)學(xué)活動(dòng)課上,小明提出這樣一個(gè)問題:∠B=∠C90°,EBC的中點(diǎn),DE平分∠ADC,∠CDE55°.如圖,則∠EAB的度數(shù)為_________

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】已知:如圖,AB=AC,AE=AF,連結(jié)BF,CE,交于O,連結(jié)AO.求證:

          1B=∠C

          2AO平分BAC

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】在正方形ABCD中,E是邊CD上一點(diǎn)(點(diǎn)E不與點(diǎn)C、D重合),連結(jié)BE.

          (感知)如圖①,過點(diǎn)AAFBEBC于點(diǎn)F.易證ABF≌△BCE.(不需要證明)

          (探究)如圖②,取BE的中點(diǎn)M,過點(diǎn)MFGBEBC于點(diǎn)F,交AD于點(diǎn)G.

          (1)求證:BE=FG.

          (2)連結(jié)CM,若CM=1,則FG的長為   

          (應(yīng)用)如圖③,取BE的中點(diǎn)M,連結(jié)CM.過點(diǎn)CCGBEAD于點(diǎn)G,連結(jié)EG、MG.若CM=3,則四邊形GMCE的面積為   

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,等腰三角形ABC的底邊BC長為4,面積是16,腰AC的垂直平分線EF分別交AC,AB邊于E,F點(diǎn)若點(diǎn)DBC邊的中點(diǎn),點(diǎn)M為線段EF上一動(dòng)點(diǎn),則周長的最小值為  

          A. 6 B. 8 C. 10 D. 12

          查看答案和解析>>

          同步練習(xí)冊(cè)答案