日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (2009•煙臺(tái))如圖,AB,BC分別是⊙O的直徑和弦,點(diǎn)D為上一點(diǎn),弦DE交⊙O于點(diǎn)E,交AB于點(diǎn)F,交BC于點(diǎn)G,過點(diǎn)C的切線交ED的延長線于H,且HC=HG,連接BH,交⊙O于點(diǎn)M,連接MD,ME.
          求證:
          (1)DE⊥AB;
          (2)∠HMD=∠MHE+∠MEH.

          【答案】分析:(1)連接OC,證明∠BFG=∠OCH=90°即可;
          (2)連接BE,證明∠HMD=∠DEB=∠EMB即可.
          解答:證明:(1)連接OC,
          ∵HC=HG,
          ∴∠HCG=∠HGC;(1分)
          ∵HC切⊙O于C點(diǎn),
          ∴∠OCB+∠HCG=90°;(2分)
          ∵OB=OC,
          ∴∠OCB=∠OBC,(3分)
          ∵∠HGC=∠BGF,
          ∴∠OBC+∠BGF=90°,(4分)
          ∴∠BFG=90°,即DE⊥AB;(5分)

          (2)連接BE,
          由(1)知DE⊥AB,
          ∵AB是⊙O的直徑,
          ,(6分)
          ∴∠BED=∠BME;(7分)
          ∵四邊形BMDE內(nèi)接于⊙O,
          ∴∠HMD=∠BED,(8分)
          ∴∠HMD=∠BME;
          ∵∠BME是△HEM的外角,
          ∴∠BME=∠MHE+∠MEH,(9分)
          ∴∠HMD=∠MHE+∠MEH.(10分)
          點(diǎn)評(píng):此題綜合性較強(qiáng),主要考查了切線的性質(zhì)、三角形的內(nèi)角和外角的性質(zhì)、等腰三角形的性質(zhì)、內(nèi)接四邊形的性質(zhì).
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源:2009年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(05)(解析版) 題型:解答題

          (2009•煙臺(tái))如圖,拋物線y=ax2+bx-3與x軸交于A,B兩點(diǎn),與y軸交于C點(diǎn),且經(jīng)過點(diǎn)(2,-3a),對(duì)稱軸是直線x=1,頂點(diǎn)是M.
          (1)求拋物線對(duì)應(yīng)的函數(shù)表達(dá)式;
          (2)經(jīng)過C,M兩點(diǎn)作直線與x軸交于點(diǎn)N,在拋物線上是否存在這樣的點(diǎn)P,使以點(diǎn)P,A,C,N為頂點(diǎn)的四邊形為平行四邊形?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由;
          (3)設(shè)直線y=-x+3與y軸的交點(diǎn)是D,在線段BD上任取一點(diǎn)E(不與B,D重合),經(jīng)過A,B,E三點(diǎn)的圓交直線BC于點(diǎn)F,試判斷△AEF的形狀,并說明理由;
          (4)當(dāng)E是直線y=-x+3上任意一點(diǎn)時(shí),(3)中的結(jié)論是否成立(請(qǐng)直接寫出結(jié)論).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:2010年江蘇省蘇州市昆山市中考數(shù)學(xué)二模試卷(解析版) 題型:解答題

          (2009•煙臺(tái))如圖,拋物線y=ax2+bx-3與x軸交于A,B兩點(diǎn),與y軸交于C點(diǎn),且經(jīng)過點(diǎn)(2,-3a),對(duì)稱軸是直線x=1,頂點(diǎn)是M.
          (1)求拋物線對(duì)應(yīng)的函數(shù)表達(dá)式;
          (2)經(jīng)過C,M兩點(diǎn)作直線與x軸交于點(diǎn)N,在拋物線上是否存在這樣的點(diǎn)P,使以點(diǎn)P,A,C,N為頂點(diǎn)的四邊形為平行四邊形?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由;
          (3)設(shè)直線y=-x+3與y軸的交點(diǎn)是D,在線段BD上任取一點(diǎn)E(不與B,D重合),經(jīng)過A,B,E三點(diǎn)的圓交直線BC于點(diǎn)F,試判斷△AEF的形狀,并說明理由;
          (4)當(dāng)E是直線y=-x+3上任意一點(diǎn)時(shí),(3)中的結(jié)論是否成立(請(qǐng)直接寫出結(jié)論).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:2010年湖北省宜昌市枝江市雅畈中學(xué)九年級(jí)中考數(shù)學(xué)強(qiáng)化訓(xùn)練專題3 二次函數(shù)(解析版) 題型:解答題

          (2009•煙臺(tái))如圖,拋物線y=ax2+bx-3與x軸交于A,B兩點(diǎn),與y軸交于C點(diǎn),且經(jīng)過點(diǎn)(2,-3a),對(duì)稱軸是直線x=1,頂點(diǎn)是M.
          (1)求拋物線對(duì)應(yīng)的函數(shù)表達(dá)式;
          (2)經(jīng)過C,M兩點(diǎn)作直線與x軸交于點(diǎn)N,在拋物線上是否存在這樣的點(diǎn)P,使以點(diǎn)P,A,C,N為頂點(diǎn)的四邊形為平行四邊形?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由;
          (3)設(shè)直線y=-x+3與y軸的交點(diǎn)是D,在線段BD上任取一點(diǎn)E(不與B,D重合),經(jīng)過A,B,E三點(diǎn)的圓交直線BC于點(diǎn)F,試判斷△AEF的形狀,并說明理由;
          (4)當(dāng)E是直線y=-x+3上任意一點(diǎn)時(shí),(3)中的結(jié)論是否成立(請(qǐng)直接寫出結(jié)論).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:2009年山東省煙臺(tái)市中考數(shù)學(xué)試卷(解析版) 題型:解答題

          (2009•煙臺(tái))如圖,拋物線y=ax2+bx-3與x軸交于A,B兩點(diǎn),與y軸交于C點(diǎn),且經(jīng)過點(diǎn)(2,-3a),對(duì)稱軸是直線x=1,頂點(diǎn)是M.
          (1)求拋物線對(duì)應(yīng)的函數(shù)表達(dá)式;
          (2)經(jīng)過C,M兩點(diǎn)作直線與x軸交于點(diǎn)N,在拋物線上是否存在這樣的點(diǎn)P,使以點(diǎn)P,A,C,N為頂點(diǎn)的四邊形為平行四邊形?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由;
          (3)設(shè)直線y=-x+3與y軸的交點(diǎn)是D,在線段BD上任取一點(diǎn)E(不與B,D重合),經(jīng)過A,B,E三點(diǎn)的圓交直線BC于點(diǎn)F,試判斷△AEF的形狀,并說明理由;
          (4)當(dāng)E是直線y=-x+3上任意一點(diǎn)時(shí),(3)中的結(jié)論是否成立(請(qǐng)直接寫出結(jié)論).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:2009年全國中考數(shù)學(xué)試題匯編《三角形》(08)(解析版) 題型:填空題

          (2009•煙臺(tái))如圖,將兩張長為8,寬為2的矩形紙條交叉,使重疊部分是一個(gè)菱形,容易知道當(dāng)兩張紙條垂直時(shí),菱形的周長有最小值8,那么菱形周長的最大值是    cm.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案