日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 拋物線y=-x2+2x+3與x軸交于A、B兩點(diǎn)(A在B的左側(cè)),與y軸交于點(diǎn)D,頂點(diǎn)為C
          (1)求A、B、C、D各點(diǎn)坐標(biāo);
          (2)求四邊形ABCD的面積;
          (3)拋物線上是否存在點(diǎn)P,使△PAB的面積是△ABC的面積的2倍?若存在,請(qǐng)直接寫(xiě)出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
          (1)∵y=-x2+2x+3=-(x+1)(x-3)=-(x-1)2+4,
          ∴A(-1,0)、B(3,0)、C(1,4)、D(0,3).

          (2)過(guò)C作CE⊥x軸,垂足為E;
          由(1)知:OA=1、OD=3、CE=4、OE=1、BE=2;
          S四邊形ABCD=S△AOD+S△BCE+S梯形ODCE
          =
          1
          2
          ×1×3+
          1
          2
          ×2×4+
          1
          2
          ×(3+4)×1=9.

          (3)由于CE=4,即點(diǎn)C到x軸的距離為4;
          若S△PAB=2S△ABC,則點(diǎn)P到x軸的距離為8,
          設(shè)P(x,-8),依題意,有:
          -x2+2x+3=-8,
          化簡(jiǎn)得:x2-2x-11=0
          解得:x=1±2
          3
          ;
          即:P(1±2
          3
          ,-8).
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          某商品的進(jìn)價(jià)為每件40元,售價(jià)為每件50元,每個(gè)月可賣(mài)出210件;如果每件商品的售價(jià)每上漲1元,則每個(gè)月少賣(mài)10件(每件售價(jià)不能高于65元).設(shè)每件商品的售價(jià)上漲x元(x為正整數(shù)),每個(gè)月的銷(xiāo)售利潤(rùn)為y元.
          (1)求y與x的函數(shù)關(guān)系式并直接寫(xiě)出自變量x的取值范圍;
          (2)每件商品的售價(jià)定為多少元時(shí),每個(gè)月可獲得最大利潤(rùn)?最大的月利潤(rùn)是多少元?
          (3)每件商品的售價(jià)定為多少元時(shí),每個(gè)月的利潤(rùn)恰為2200元?根據(jù)以上結(jié)論,請(qǐng)你直接寫(xiě)出售價(jià)在什么范圍時(shí),每個(gè)月的利潤(rùn)不低于2200元?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

          已知二次函數(shù)y=ax2+bx+c的圖象如圖所示,則這個(gè)二次函數(shù)的表達(dá)式是y=______.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          某幢建筑物,從10米高的窗口A用水管和向外噴水,噴的水流呈拋物線,拋物線所在平面與墻面垂直(如圖),如果拋物線的最高點(diǎn)M離墻1米,離地面
          40
          3
          米,求水流下落點(diǎn)B離墻距離OB.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+bx+c經(jīng)過(guò)A(-2,-4),O(0,0),B(2,0)三點(diǎn).
          (1)求拋物線y=ax2+bx+c的解析式;
          (2)若點(diǎn)M是該拋物線對(duì)稱(chēng)軸上的一點(diǎn),求AM+OM的最小值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          如圖所示,在直角坐標(biāo)系xOy中,A,B是x軸上兩點(diǎn),以AB為直徑的圓交y軸于點(diǎn)C,設(shè)過(guò)A、B、C三點(diǎn)的拋物線關(guān)系為y=x2-mx+n,若方程x2-mx+n=0兩根倒數(shù)和為-2.
          (1)求n的值;
          (2)求此拋物線的關(guān)系式.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          如圖1,已知:拋物線y=
          1
          2
          x2+bx+c與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,經(jīng)過(guò)B、C兩點(diǎn)的直線是y=
          1
          2
          x-2,連接AC.
          (1)B、C兩點(diǎn)坐標(biāo)分別為B(______,______)、C(______,______),拋物線的函數(shù)關(guān)系式為_(kāi)_____;
          (2)判斷△ABC的形狀,并說(shuō)明理由;
          (3)若△ABC內(nèi)部能否截出面積最大的矩形DEFC(頂點(diǎn)D、E、F、G在△ABC各邊上)?若能,求出在AB邊上的矩形頂點(diǎn)的坐標(biāo);若不能,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          科學(xué)研究表明,合理安排各學(xué)科的課外學(xué)習(xí)時(shí)間,可以有效的提高學(xué)習(xí)的效率.教育專(zhuān)家們通過(guò)對(duì)九年級(jí)學(xué)生的課外學(xué)習(xí)時(shí)間與學(xué)習(xí)收益情況進(jìn)行進(jìn)一步的研究發(fā)現(xiàn),九年級(jí)學(xué)生每天課外用于非數(shù)學(xué)學(xué)科的學(xué)習(xí)時(shí)間t(小時(shí))與學(xué)習(xí)收益量y1的函數(shù)關(guān)系是圖①中的一條折線;每天用于數(shù)學(xué)學(xué)科的學(xué)習(xí)時(shí)間t(小時(shí))與學(xué)習(xí)收益量y2的函數(shù)關(guān)系如圖②所示:圖象中OA是頂點(diǎn)為A的拋物線的一部分,AB是射線.

          (1)求出y1與時(shí)間t(小時(shí))之間的函數(shù)關(guān)系式,并注明自變量t的取值范圍;
          (2)求出y2與時(shí)間t(小時(shí))之間的函數(shù)關(guān)系式,并注明自變量t的取值范圍;
          (3)如果九年級(jí)學(xué)生每天課外學(xué)習(xí)的時(shí)間為2小時(shí),學(xué)習(xí)的總收益量為W(W=y1+y2),請(qǐng)問(wèn)應(yīng)如何安排學(xué)習(xí)時(shí)間才能使學(xué)習(xí)的總收益量最大?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          如圖,正方形ABCD的邊長(zhǎng)是4,E是AB邊上一點(diǎn)(E不與A、B重合),F(xiàn)是AD的延長(zhǎng)線上一點(diǎn),DF=2BE.四邊形AEGF是句型,其面積y隨BE的長(zhǎng)x的變化而變化且構(gòu)成函數(shù).
          (1)求y與x之間的函數(shù)關(guān)系式,并寫(xiě)出自變量x的取值范圍;
          (2)若上述(1)中是二次函數(shù),請(qǐng)用配方法把它轉(zhuǎn)化成y=a(x-h)2+k的形式,并指出當(dāng)x取何值時(shí),y取得最大(或最小)值,該值是多少?
          (3)直接寫(xiě)出拋物線與x軸交點(diǎn)坐標(biāo).

          查看答案和解析>>

          同步練習(xí)冊(cè)答案